
SOFTWARE ENGINEERING LABORATORY SERIES SEL-93-001

COLLECTED SOFTWARE
ENGINEERING PAPERS:

VOLUME Xl

NOVEMBER 1993

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

Form ApprovedREPORT DOCUMENTATION PAGE OMSNo.o7o4-o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlln_on, VA 22202-4302, and to the Office of Mana_lement and Bud_let, Paperwork Reduction Proiect (0704-0188 I, Washin_lton, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1993 Contractor Report

4. TITLE AND SUBTRLE

Collected Software Engineering Papers:

Volume XI

6. AUTHOR(S)

Software Engineering Laboratory

7.

i9.

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Branch

Code 552

Goddard Space Flight Center

Greenbelt, Maryland

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-4)001

5. FUNDING NUMBERS

552

8. PERFORMING ORGANIZATION
REPORT NUMBER

SEL-93-001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189347

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Ma_'mum 200 worts)

This document is collection of selected technical papers produced by participants in the Software Engineering Labora-

tory (SEL) from November 1992 thorugh November 1993. The purpose of the document is to make available, in one

reference, some results of SEL research that originally appeared in a number of different forums. This is the llth such

i volume of technical papers produced by the SEL. Although these papers cover several topics related to software

engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the

SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document.

14. SUBJECT TERMS

Software Models, Software Measurement, Technology Evaluations

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

118. SECURITY CLASSIRCATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

93

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National

Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) and

created to investigate the effectiveness of software engineering technologies when applied to

the development of applications software. The SEL was created in 1976 and has three

primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the GSFC

environment; (2) to measure the effect of various methodologies, tools, and models on this

process; and (3) to identify and then to apply successful development practices. The

activities, findings, and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of reports that includes this document.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552

Goddard Space Night Center

Greenbelt, Maryland 20771

10014023L iii
PAGE_____ LNTE._TIONALLYBLANK

TABLE OF CONTENTS

Section 1--Introduction
• '''l*°.*o,*o*,g= oo,,oalo,66,°o,o,o,,e,,o,oo

Section 2--Software Models
"'**',Q,I, i, **el ,o,ll, J, ,,°o, ***m,oD,, ,a

Developing Interpretable Models with Optimized Set Reduction for

Identifying High Risk Software Components, L. C. Briand,

V. R. Basili, and C. J. Hetmanski

"Modeling and Managing Risk Early in Software Development," L. C. Briand,

W. M. Thomas, and C. J. Hetmanski

"An Information Model for Use in Software Management Estimation and

Prediction," N. R. Li and M. V. Zelkowitz

Section 3--Software Measurement

"Measuring and Assessing Maintainability at the End of High Level

Design," L. C. Briand, S. Morasca, and V. R. Basili

Section 4---Technology Evaluations

"Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"
M. Stark

° • • • ° • , , , ° , ° J ° ° ° ° . , , ° , ° . ° , ° ° , , ° ° , ° , ° , , , ° ° . , ° , ° , ° °

Standard Bibliography of SEL Literature

1-1

2-1

2-3

2-35

2-47

3-1

4-3

10014023L

PRf_II'_.NG PA_E _LANK NOT FIILMLIO

V

_'C

._ . . _-;i = - == --_-L:_..::_:--_- _, =.:=.=_=_

...... SECTION 1 - INTRODUCTION

i

[.....

-.:_;L:!:_:_::::-- _ -

II

|
I
_i

I

I
!

7:

. Z

- _ -_-

l

SECTION 1--INTRODUCTION

This document is a collection of selected technical papers produced by participants in the

Software Engineering Laboratory (SEL) from November 1992 through November 1993.

The purpose of the document is to make available, in one reference, some results of SEL

research that originally appeared in a number of different forums. This is the l lth such

volume of technical papers produced by the SEL. Although these papers cover several topics
related to software engineering, they do not encompass the entire scope of SEL activities and

interests. Additional information about the SEL and its research efforts may be obtained
from the sources listed in the bibliography at the end of this document.

For the convenience of this presentation, the five papers contained here are grouped into
three major sections:

• Software Models

• Software Measurement

• Technology Evaluations

The first section (Section 2) includes studies on models for managing risk early in the

software development process, for identifying high-risk software components, and for

estimation and prediction in software management. Section 3 presents a study on the mea-

surement of software maintainability during the design phase. A study on the impacts of
object-oriented technologies in the SEL appears in Section 4.

The SEL is actively working to understand and improve the software development process at
Goddard Space Flight Center (GSFC). Future efforts will be documented in additional

volumes of the Collected Software Engineering Papers and other SEL publications.

10014023L 1-1

+=_<_=:_-_=_- -'-_ sEC_'iON 2-SOFTWARE MODELS

,___;:-.._ ='- =_ - _ .L'_" l_ _-_"

=-_=

+- _-:T_-_' _Tf:_--_.::--_ =_ = -- --

SECTION 2---SOFTWARE MODELS

The technical papers included in this section were originally prepared as indicated below°

Developing Interpretable Models with Optimized Set Reduction for Identifying

High Risk Software Components, L. C. Briand, V. R. Basili, and C. J. Hetmanski,

TR-3048, University of Maryland, Technical Report, March 1993

"Modeling and Managing Risk Early in Software Development," L. C. Briand,

W. M. Thomas, and C. J. Hetmanski, Proceedings of the Fifteenth International

Conference on Software Engineering (ICSE 93), May 1993

"An Information Model for Use in Software Management Estimation and Predic-

tion," N. R. Li and M. V. Zelkowitz, Proceedings of the Second International

Conference on Information Knowledge Management, November 1993

10014023L 2-1

N94- 35435

Developing Interpretable Models with Optimized Set Reduction

High Risk Software Components I

/

t>_mf

for Identifying

Lionel C. Briand, Victor R. Basili and Christopher J. Hetmanski

Institute for Advanced Computer Studies,
Computer Science Department,

University of Maryland, College Park, MD, 20742

Abstract

Applying equal testing and verification effort to all parts of a software system is not very
efficient, especially when resources are limited and scheduling is tight. Therefore, one
needs to be able to differentiate Iow / high fault frequency components so that testing /
verification effort can be concentrated where needed. Such a strategy is expected to detect

more faults and thus improve the resulting reliability of the overall system. This paper
presents the Optimized Set Reduction approach for constructing such models, intended to
fulfill specific software engineering needs. Our approach to classification is to measure the

software system and build multivariate stochastic models for predictiing high risk system
components. We present experimental results obtained by classifying Ada components into
two classes: is or is not likely to generate faults during system and acceptance test. Also,
we evaluate the accuracy of the model and the insights it provides into the error making
process.

Key words: Optimized Set Reduction, data analysis, fault-prone Ada components,

stochastic modeling, machine learning, classification trees, logistic regression.

1 Introduction

It has been noted that a small number of software components are responsible for a disproportionately
large number of faults in any large-scale system [BP84, SP88, MK92]. Therefore, if we can identify
components that are likely to produce a large number of faults, we can concentrate the verification and

testing processes on them. This allows us to optimize the reliability of our software system with

minimum cost. To do this, we build quantitative models that predict which components are likely to
contain the highest concentration of faults. However, building such models is a difficult task: it is often

the case in software engineering that the data which is collected is minimal, incomplete and
heterogeneous [BBT92]. This presents several problems for model construction and interpretation (e.g.,
small data sets, inaccurate models, outLiers). Therefore, we need a modeling process that is robust to

these problems, allows for the reliable classification of high risk components (those that have a high
probability of generating a fault during system or acceptance test), and aids in the understanding of the
causes of this high risk. This understanding is important because it can give us insight into the software
development process, allowing us to take remedial actions and make better process decisions in thefuture.

In this context, we will examine the use of the following modeling approaches:

• Logistic regression, which is one of the most commonly used classification techniques [Agr90,
HL89]. This technique has been applied to software engineering modeling [MK92], as well as

other experimental fields, and will therefore be used as a baseline for comparison in this paper.

1 Research for this study was supported in part by NASA grant NSG 5123 and NSF grant 01-5-24845

10014023L 2-3

PlI_t_-_ ID_CF u, _Jv _r'_T FIL_I_D
PA_;_- _____, ti_t I _,.:ll ! i:,,;tt_l,.,i,, l i_l_

Many assumptions and constraints inherent to this technique make it'difficult to apply in a

software engineering context: (1) non-monotonicity of the probability density function on the
explanatory variable range (2) interactions between explanatory variables are difficult to take into
account when performing exploratory data analysis with numerous explanatory variables.

* Classification trees, which are described in [BF+84]. They were used to address software

engineering modeling issues in [PA+82, SP88]. A review may be found in [CE87, BBT92].
Their strengths stem from their simplicity and readability. Their weaknesses come from a lack of
ability to extract and use all statistically significant trends and a tendency to include non-relevant
and non-significant information in the tree.

• Optimized Set Reduction (OSR), which has been developed at the University of Maryland
[BBT92] in the framework of the TAME project [BR88] and has already been applied to several
software engineering applications [BBT92, BBH92, BTH93]. It is partially based on both
machine learning principles [Q86, BF+84], and univariate statistics [Cap88]. Our motivation for
developing OSR, and a tool to support it, was to design a data analysis approach that matches, to
the extent possible, the specific needs of multivariate empirical modeling for software
engineering [BBT92]. OSR generates logical expressions which represent patterns in a data set.
For instance, consider the following example of a simple pattern (logical expression) related to

high fault concentration:

Example 1:
A compilation unit that imports numerous declarations from outside the subsystem in which it is
developed, that shows a large average statement nesting level and an intense use of global
variables is likely to generate fault reports during system and acceptance testing. The
corresponding logical expression characterizing this class of compilation units would be:
NONLOC_IMP = High ^ (NESTING = High ^ GLOBALS = High)

In this paper, we intend to show that OSR may be used as an alternative to logistic regression or
classification trees to generate empirical models of risk within a software system, and that it can yield
more accurate results. We will discuss issues related to the interpretation of the generated models. In

particular, we will demonstrate how OSR can be useful in (1) identifying charactersfics of high-risk
components in a large Ada system and (2) providing some understanding about how faults originate
during the software development process

In Section 2, we present an evolved version of the OSR algorithm (an earlier version of the OSR
approach was applied to project cost estimation and published in ['BBT92]) which is intended to make
OSR models more accurate and easier to interpret. Specifically, the new algorithm improves the
interpretability and the accuracy of the models in three ways. First, it provides a mechanism for dealing
with the discretization of the explanatory variable ranges in an automated way. This better supports the
requirement that our models need to be able to handle the problem of heteroscedascity (see R5 in
[BBT92]) Secondly, we provide OSR with the ability to work with conjunctive predicates (which will
be called predicates in this paper), allowing our models to elicit the effects of combinations of variables
which were not visible in the previous version of OSR. Finally, we provide support for recognizing
similarities among patterns, which aids the user in model interpretation. These second and third
adaptations help OSR deal with the requirement that our models are able to handle interdependencies and
interactions among the explanatory variables (see R4 in ['BBT92]).

Also in contrast to ['BBT92], this paper applies the OSR modeling technique to the issue of classifying
Ada components as either low or high risk, as opposed to project cost estimation (prediction on a
continuous range). Accordingly, we use logistic regression and classification trees as a baseline for
evaluating the OSR results. (Preliminary and partial results of this research were presented in [BBH92]

based on the analysis of FORTRAN systems).

= 10014023L 2-4

In Section 3, we present a validation of the OSR process, which is based on constructing models using
data from a large Ada system developed at the NASA Goddard Space Flight Center. In Section 3.2 we

compare the generated OSR models to both logistic regression and classification tree models with respect
to their accuracy. In Section 3.3, we discuss the interpretability of the OSR models. Finally, in Section
4, we outline the main conclusions of this paper and define the future directions of the research.

2 Optimized Set Reduction

Assume we want to assess a characteristic of an object. We will refer to this characteristic as the

dependent variable (Y). The object is represented by a set of explanatory (known or assessable)
variables (called Xs). These variables can be either discrete or continuous. Also, assume we have a
historical data set containing a set of experiences that contain the previously cited Xs plus an associated
actual Y value. Our goal will be to determine which subset of experiences from the historical data set
provides the best characterizations of the current object to be assessed.

Example 2: Assess the expected frequency of faults CY) that will be detected during system and

acceptance test within a particular compilation unit. For instance, the Xs may be: complexity
metrics, system architecture metrics or developer related evaluation of skills.

2.1 The OSR Process

First, we will introduce new terminology in an attempt to both formalize the intuitive concepts related to
empirical modeling and give those concepts a fm'n grounding in the OSR context. Subsection 2.1.1

presents the notions informally to provide the reader with some intuition about the method. The rest of
Section 2 will be more structured and formal in order to define more complex notions without
ambiguity. Whenever needed, definitions will be formal specifications whereas others will be in
algorithmic form.

2.1.1 Basic Definitions

Assume we have a historical data set consisting of n experiences, where each experience consists of a

value for a single dependent variable (Y) and a set of values corresponding to a set of m explanatory
variables (EV = {X1,X2 Xm }). We define the term pattern vector to mean one of these such

experiences. Assume the dependent variable's value domain (dora(Y)) is divided into a set of disjoint
and exhaustive classes which can be either intervals (if the Y is continuous) or categories (if the Y is
discrete). Each explanatory variable has its own value domain (dom(Xi)) which, like dom('Y) is divided

into a set C of disjoint and exhaustive value classes C = {Classil, Classi2... Classik}. We define a
measurement vector to be a pattern vector without the dependent variable Y. (Note that a measurement
vector can be used to represent an object whose dependent variable value is not known, but is of interest

and which we wish to assess). The measurement vector value domain is MV x dom(X_).
i • 11 .. rn}

Likewise, the pattern vector value domain (i.e., the domain of the vectors in the data set) can be

represented as PV = dom('Y) × MV. We define PVS _ PV to be a pattern vector set representing thehistorical data set.

Example 3: Suppose (Size = 100 LOC's, Function_type = computation) is a measurement

vector characterizing a compilation unit. Assuming Y is #faults, (#faults = 6, Size = 100 LOC's,
Function_type = computation) is a pattern vector characterizing a particular testing experience on
a compilation unit.

10014023L 2-5

At thevery heart of the OSRprocess,is what we call a singleton predicate. "We define a singleton

predicate to be a pair with the following form: (Xi ,Classij) meaning that explanatory variable Xi has a

value belonging to Classij _ dom(Xi). A singleton predicate (also written Xi e Classij) is said to be

TRUE for a measurement vector if that vector's explanatory variable Xi value is an element of Classij,
otherwise, the singleton predicate is said to be FALSE for that vector.

Example 4: Size e [50, 200) is a singleton predicate

Now that we have defined the notion of a singleton predicate, we can define other elements of OSR
which are built upon this notion. For instance, we can define a conjunctive predicate (denoted Pred and
simply called a predicate from here on) as the conjunction of singleton predicates. We will consider a
predicate to be a set of singleton predicates, where the conjunction is implicit. A predicate is said to be
TRUE for a given measurement vector if each of its constituent singleton predicates is TRUE for that
vector. (Note that by defining a predicate to be a set (conjunction) of singleton predicates gives OSR the
ability to elicit some of the complex interdependencies that exist between the explanatory variables, see
requirement R4 in [BBT92]).

Example 5: Size _ [50, 200) ^ Function_type _ {computation} is a predicate

A predicate may be used to characterize sets of pattern vectors. For example, if we define
IS_TRUE(Pred, pv) to yield TRUE if Pred is a true logical expression for the pattern vector pv, (i.e.,
each singleton predicate in Pred is true for pv), then we can define a predicate Pred and a subset PSS of
the historical data set (PVS) such that IS_TRUE(Pred, pv) yields TRUE for each pv in PSS. Similarly,
we clef'me SUBSET(PSS, Pred) to denote a subset of PSS characterized by Pred. Also, we define PSS

to be equivalent to SUBSET(PSS, TRUE). Finally, MEMBER(X, Pred) yields the value TRUE if the
variable X appears anywhere in Pred, FALSE otherwise.

2.1.2 Optimal Subsets of Experiences

In this section, we rigorously define the notion of "optimal subset of experiences" by defining the
function OPT that extracts these subsets from a given historical data set. We will see in the next section
that OPT is not directly implementable. Nonetheless, this definition should help the reader understand
our goals at a f'trst glance. These definitions, by their very nature are somewhat terse. However, the
accompanying explanations should help the reader get an intuitive understanding of the process.

• Definition 1: Normalized Entropy H(PSS, Y)

This is the information theory definition of entropy that characterizes distributions, normalized to yield a
value between 0 and 1. This concept is commonly used in machine learning[M83] in order to assess the
level of information provided by a distribution on a continuous or discrete range. It yields a value 0
when unambiguous information is provided and 1 when no information is provided.

H(PSS, Y) = _ p(PSS, ClassYj)log,c,p(PSS, ClassYj)
ClassYj _ C

where,

• PSS is a set of pattern vectors

• ClassYj is a class defined on dom(Y')

p(PSS, Yj) is the prior probability that a vector which is an element of PSS has a dependent

variable value belonging to the dependent variable class Yj

10014023L 2-6

• Definition 2: DIFFDIST(PSSi, PSSj, Y)

DIFFDIST(PSS i, PSSj, Y) = TRUE if the two sets of pattern vectors characterized by PSS i and PSSj
show a statistically significant DIFFerence in DISTribution on the dependent variable (Y) range and is
FALSE otherwise. This function is based on binomial tests for proportions and is better described in
[BBT92]. The statistical level of significance used as a threshold between TRUE and FALSE is
subjective and is therefore defined by the user (e.g., 0.05, 0.1).

• Definition 3: VALID(PSS, mv)

This function yields TRUE if at least one predicate is TRUE for all the pattern vectors in PSS and for the
measurement vector my.

PSS _ PVS Amv e MV A 3Pred such that (Vpv e PSS , IS_TRUE(Pred, pv) A
IS_TRUE(Pred, my)) _ VALID(PSS, mv)

• Definition 4: EMIN(PSS, PSSj, Y)

EMIN(PSS, PSSj_,_Y) = TRUE if PSSj, a subset of PSS, shows a significantly different distribution

from PSS on the Y range (based on a predefined level of significance and according the result of the

function DIFFDIST) and for aLl other subsets PSSk of PSS showing a statistically significant Y

distribution, H(PSSj, Y) < H(PSSk, Y). EMIN stands for: Entropy is MINimum. In other words,

EMIN tells us if PSSj characterizes a subset with minimal possible entropy and that this low entropy is
not likely to be due to chance.

PSS c PVS A PSSj c PSS ^ (DIFFDIST(PSSj, PSS, Y) A (VPSSk c PSS, k¢j,

DIFFDIST(PSSk, PSS, Y) A H(PSSj, Y) < H(PSSk, Y))) _ EMIN(PSS, PSSj, Y)

" Definition 5: OPT(PVS, mv, Y)

OPT yields a set of OPTimal subsets of pattern vectors of PVS (the historical data set) based on the

clef-tuitions presented above. These subsets are characterized by predicates which are built based upon
known information (i.e., my) and show a minimal entropy. They can therefore be used for predicting
the value of Y with respect to inv.

Example 6: In Figure 1, based upon a given measurement vector (mv) and a given historical
dataset, the optimal subset extracted by OPT and characterized by the predicate on the left hand

side of Figure 1 indicates a strong probability for Y to lie in the interval Y2. This may be used
for predicting the class where the object described by mv is likely to lie. Also, if Y is defined on
a continuous scale, the optimal subset expected value may be used as a prediction.

10014023L 2-7

,|

Predicate :

Xl_ Class 12
A

X2_ Class 21"'9_
A

X3_ Class 32

Probability Distribution :

Number

of Pattern

Vectors

Y1 Y2 Y3 Y4
Dependent Variable (Y)

(by class)

Figure 1: Classification with Extracted Subsets

Based on the primitives defined above, OPT may be deemed as follows:

OPTff'VS, mv, Y) = {PSS I PSS _ PVS ^ VALID(PSS, mv) ^ EMIN(PSS, PVS, Y) }

The function OPT as defined above defines optimal subsets of experiences with minimal entropies and

characterized by optimal predicates. However, this is just a first step in the definition of an optimal
search algorithm to extract datasets' patterns since there are severn reasons why this simple function is
not fully adequate to build empirical models to fulfill our needs. Some of these reasons are simply
computational in nature while others are related to the loss of useful information.

• 1: The number of possible singleton predicate combinations makes the execution time of the search

of optimal predicates prohibitive without a search strategy.

-2: We are not only interested in the optimal subsets extracted by OPT but also by the predicates that
characterize them. We want each generated predicate to contain only singleton predicates that

have a significant impact on the resulting distribution entropy (see Figure 1). Thus, we can
minimize the information necessary to identify optimal subsets and make the predicates more
interpretable.

• 3" We need to extract information about the relative impact of the various singleton predicates
within the optimal predicates.

• 4: The conditions under which singleton predicates or predicates appear relevant have to be
determined.

Therefore, we will now define an algorithm which addresses these issues, discussing its relationship to
the function OPT. This is the Optimized Set Reduction process which can roughly be described by a
three step recursive algorithm where entropy is optimized in a stepwise manner.

2.2 The OSR Algorithm

The goal of the OSR algorithm is to produce a set ofpanerns which characterize the trends observable in
the historical data set while addressing the four modeling issues mentioned above. In this context, the
notion ofpattern is based upon the notion of predicate as defined above while addressing some of the
mentioned modeling needs. This definition of pattern intends to be both useful for predicting and
suitable to interpretation.

10014023L 2-8

In subsection 2.2.2, we shall describe the OSR algorithm in detail. However, before doing so, we need
to define a number of preliminary concepts that are used in the algorithm.

2.2.1 Preliminary Definitions

• Definition 6: OSR Pattern

As mentioned above, OSR generates patterns. A pattern is an ordered conjunction of predicates which

characterizes a subset of PVS that shows a minimal entropy distribution. The notion of ordering will be

represented by the "ORDERED AND" symbol (A..,). It is logically equivalent to the symbol (A) with

the exception that predicates to the right of a A symbol are relevant only when all predicates to the left of

the symbol are already TRUE. The notion of order is introduced here to capture information about the
conditions under which a predicate is relevant and does not have any logical impact on the
characterization of optimal subsets We will call the ordered expression to the left of a given predicate in a
pattern the context of the predicate. This addresses issue number 4 mentioned above.

Example 7: Define two predicates

Predl = SUBSYSTEM e REAL-TIME CONTROL A SUBSYSTEM _ LARGE

Pred2 = #GLOBAL VARIABLES _ LARGE.

If we assume the pattern Predl A Pred2 was generated by OSR, we can see that this pattern

characterizes a pattern vector set suggesting a high risk which is defined, in this particular
example, as the probability of detecting errors that are difficult to correct during the test phases
(see Figure 2).

This pattern (Predl A Pred2) has a specific interpretation associated with it. Pred] is a non-

singleton predicate and Pred2 is relevant within the context of Predl. This pattern implies the
following interpretation. If a subsystem is both large and real time, then it is significantly more
likely to be of high risk than a random subsystem. However, it does NOT suggest that either real
time subsystems or large subsystems independently increase the probability that a subsystem will
be of high risk. Also, within the context of large, real time subsystems, subsystems with a large
number of global variables have a significantly greater probability of being high risk than those
with a small number of global variables. However, this pattern does NOT suggest that a large
number of global variables has a significant impact on the probability that a subsystem will be of
high risk outside the context of large, real time subsystems. (More details concerning pattern
generation and interpretation will be presented later in the paper.)

10014023L 2-9

Pattern :] Probability Distribution :

II Number _

Pred 1 _ of Pattern | [/'//A

/

0 >0

#Faults difficult to correct

Figure 2: Classification Using Patterns

• Definition 7: DISCRETIZE(PSS, X i)

Given a particular subset of pattern vectors (PSS), we want to divide/cluster the ranges/categories of the
explanatory variables into an exhaustive and disjoint set of classes (Classil ... Classik for the
explanatory variable Xi) based on a meaningful class creation techniques. This is used to both define

singleton predicates and to better satisfy the problem of heteroscedascity, i.e., requirement R5 of
[BBT92] which states that an explanatory variable may be a good predictor on a part of its range/value

domain while a mediocre predictor otherwise. Clustering of discrete categories can only be performed by
the user by defining taxonomies. Numerous techniques are available in the literature to create intervals

on continuous / ordinal ranges (e.g., cluster analysis) [DG84]. However, none appear to have
satisfactory properties for our problem. Therefore, classes are created for continuous / ordinal
explanatory variables according to the procedure DISCRETIZE briefly presented below and described in
Appendix II.

DISCRETIZE(PSS, X i) defines classes on the range of X i (a particular continuous or ordinal

explanatory variable) based on a pattern vector subset PSS. This algorithm has the following properties:

• Either all or some of the classes should show distributions on the Y range that are significantly
different than the distribution resulting from the union of those classes. If not, differentiating these
classes and creating new pattern vector subsets is meaningless

• The algorithm handles monotonic and non-monotonic underlying distributions on the Y range.

•The algorithm is not oversensitive to the addition or deletion of few pattern vectors so stable
panems are generated.

Our goal is to take into account the above constraints and to minimize the average entropy across the
created classes in order to have classes as homogeneous as possible with respect to the dependent
variable values of their pattern vectors. Figure 3 illustrates the output of the algorithm. We assume an

actual underlying and unknown non-monotonic probability density function and an observed sequence
of Y values on the explanatory variable X range. We also assume two classes (I, 2) are defined on the Y

value domain. Using the DISCRETIZE algorithm produces Boundaryl and Boundary2 in Figure 3,
which creates the corresponding set of three explanatory variable value classes across the X range.

10014023L 2-10

1

0

BoundaryI

/ Actual Sequence _ Function
i/ ofyval,,es l\J

111211111]21222122212222122:11211111112II

Figure 3: Discretization Process
X range

Ib

• Definition 8: GENERATE_SINGLETONS(PSS, mv)

Let PSS represent the considered pattern vector set and let my be a measurement vector. The classes

defined by DISCRETIZE for each explanatory variable Xi give us a set of singleton predicates: {Xi •

Classil Xi • Classik}. GENERATE_SINGLETONS(PSS, mv) generates the set of all singleton
predicates SP such that SP = {Predi I IS_TRUE(Predi, mv)}.

• Definition 9: SIG_PREDICATE(PSS, Pred, Y)

The predicate Pred is said to be significant for the data set PSS if SUBSET(PSS, Pred) shows an

entropy lower than the one of PSS and if their distributions on the Y range show statistically significant
differences.

PSS _ PVS ^ (H(SUBSET(PSS, Pred), Y) < H(PSS, Y) ^

DIFFDIST(PSS, SUBSET(PSS, Pred), Y)) = SIG_PREDICATE(PSS, Pred, Y)

Example 8: Assuming two dependent variable classes ([low, high]), suppose Pred
characterizes a subset whose distribution across the two classes is [10, 7]. This subset shows an
entropy which is lower than the entropy of PSS, which had a distribution [100, 75], but the
difference is not statistically significant since the proportion of pattern vectors in each class is

practically the same. A binomial test for proportions [Cap88] is used to assess the significance of
the observed difference in entropy.

• Definition 10: MINIMAL(PSS, Predi, Y)

The predicate Pred i is said to be minimal for the pattern vector set PSS if it characterizes a subset of

PSS which shows a significantly different distribution across the Y classes and there exists no other

predicate Pred.,] =_ Predi such that Predj characterizes a subset of PSS which shows a significantly

different distribution across the Y classes. Otherwise, Pred i contains more singleton predicates than is

necessary to significantly improve the entropy and is not considered to be minimal.

SIG_PREDICATE(PSS, Predi, Y) ^ (V j, Predj = Predi, j_:i, (_SIG_PREDICATE(PSS,Predj, Y))
MINIMAL(PSS, Predi, y)

10014023L 2-11

Example 9: Assumethat thepredicatePredl = SUBSYSTEM • REAL-TIME CONTROL A

SUBSYSTEM e LARGE yields, in a defined context, an entropy of 0.5 (assumed to yield a
significantly different distribution from the parent set). If Pred2 = SUBSYSTEM • REAL-
TIME CONTROL by itself yields an entropy of 0.5, Predl is not minimal.

• Definition 11: VALID_PREDICATES(PSS, PREDc, SP, Y)

Let PSS represent a set of pattern vectors and PRED c be a set of predicates which define the context

characterizing PSS. Let SP be a set of singleton predicates and Y be the dependent variable.

Assuming that the set SP has been created by using GENERATE_SINGLETONS, we generate the set
of all predicates which are conjuncts of the singletons in SP and which are minimal with respect to PSS

(as defined above), as long as they do not use any explanatory variable X that appears in PRED c. These

predicates are called valid and are the ones that appear potentially useful for extracting subsets of PSS

with high predictive power for mv on the Y range. With respect to the implementation of this procedure,
the user may restrict the search space by fixing a maximum number of singleton predicates per predicate.
However, some complex but meaningful predicates may not be extracted by doing so.

VALID_PREDICATES(PSS, PREDc, SP, Y) = {Pred i I MINIMAL(PSS, Predi, y) A Predi _ SP A

(V j, Pred; • PREDc, VX such that X e { Xk I Xk e EV A MEMBER(Xk, Predj)},
_MEMB3ER(X, Predi) }

• Definition 12: EXTRACT_SUBSETS (PSS, PRED)

Let PRED be a set of predicates. A set of subsets, where each subset is characterized by one and only
one predicate in the set PRED, is extracted from PSS.

EXTR-ACT_SUBSETS (PSS, PRED) = {PSS i I Pred i _ PRED A PSS i = SUBSET(PSS, Pred i)}

2.2.2 The Algorithm

When the dependent variable's value domain is defined on a continuous scale, its range is assumed to be
divided into intervals / classes. These classes are fLxed and will be used throughout the algorithm. These
intervals are usually defined according to two main criteria: the size of the dataset and the specific use of
the model. The larger the data set, the narrower the classes may be so that the model can produce a more
accurate response. Also, the definition of these classes must also take into account the future use of the

model, e.g., they represent clusters on the Y range or a finite number of situations suggesting alternative
actions.

Example 10:

Assume that the range of the dependent variable (Y) is an integer range from 0 to 5, indicating
the number of fault reports that were generated for a component during system and acceptance
test. Then, we may decide to define the following dependent variable classes:

ClassY1 = Y in [0, 1) Low Risk Components
ClassY2 = Y in [1, +,o) High Risk Components

Let PSS be a set of pattern vectors, let rnv be a measurement vector characterizing the object to be

10014023L 2-12

classified on the Y range, and let PRED c be the set of predicates composing the pattern characterizing the

set PSS. Recall that we cannot use OPT directly. However, OSR(PSS, my, PREDc, Y) heuristically
returns a set of "optimal" subsets using the algorithm defined below.

OSR(PSS, my, PREDc, Y)

• Step 1: SP = GENERATE_SINGLETONS (PSS, my)

/* Generate a set of optimal singleton predicates based on the pattern vector set PSS */
/* and for the measurement vector my ,/

•Step 2: PRED = VALID_PREDICATES (PSS, PREDc, SP, Y)

/* Generate all the valid predicates based on the availab]e set of singleton predicates */

/* SP, the current context defined by PRED c , and its corresponding pattern vector set PSS. *I

• Step 3:

if PRED = _ /* no Predicates have been created at Step2 */

return PSS ;
else

(

/* A subset is extracted for each valid predicate created at step 2 */

/* OSR is called recursively for each of these extracted subsets */
for all PSS i e EXTRACT_SUBSETS (PSS, PRED) do

(

/* the context of PSS i is now the context of PSS union Pred i */

PREDi = PRED c k2 Pred i ;

/* call OSR for the subset PSS i */

OSR(PSS i, my, PREDi, y) ;

}

Initially, call OSR(PVS, my, Z, Y) where PVS is the historical data set.

The OSR algorithm can be viewed as a recursive function of OPT as described below. PVS is the

historical data set and mv the vector describing the object to be assessed. Let us assume we modify the
definition of the function VALID, which is used to build OPT, so that the function MINIMAL is
included in it. Then, VALID becomes the following:

PSS c PVS ^ mv • MV ^ 3Pred i such that ('V'pv • PSS, IS_TRUE(Pred i , pv) ^ IS_TRLrE(Pred i ,
mv) ^ MINIMAL(PSS, Pred i , Y)) _ VALID(PSS, my, Y)

Then, assuming the def'mition of OPT uses this new definition of VALID, we can then def'me OSR in
the following way:

U(OSR(PSS i, mv, PRED c u th'ed i, Y)), ifOPT(PSS, mv, Y) _ _]
OSR(PSS. mv. PILED O Y) = _'_,.'_'_--.-

[{PSS}, otherwise.

Note that at each level of recursion, a minimal subset of pattern vectors is extracted. These recursive]y
nested, extracted subsets are each characterized by a predicate in a context. Thus, if we implicitly order
the paths, the ordered conjunction of predicates along each recursive path is a pattern (see Definition 6

10014023L 2-13

andFigure4).

Thesubsetsof PVSextractedby OSRfor a particularmv maybeusedfor theclassificationof Y for my.
Also, if patternsareextractedfor eachmv in PVS, the resultingset of patternsmay beusedfor the
interpretation of the impact of the explanatory variableson the dependentvariable in a particular
developmentenvironment.Theseissueswill beaddressedin thenextsections.

Example11

In figure 4, wecanseehowOSRpatternsaregeneratedduringthesubsetextractionprocess.At
thef'trst(highest)level in thehierarchy,suppose<NUM IMPORTS= HIGH> is a predicate
which is minimal, causing the extraction of Subset 1. At the second level, suppose the two place
predicate <NESTING=HIGH ^ CMPLX=HIGH> was found to be minimal. Then, by tracing
the hierarchy down this particular path, OSR generates the following pattern, which corresponds
to the extracted subset 1.1:

NUM IMPORTS = HIGH ^ (NESTING=HIGH ^ CMPLX=HIGH)

Also, each path in the hierarchy from the top set (PVS) to a bottom]evel subset is marked by its
own pattern. Thus, OSR creates a set of patterns, (i.e. all the paths in the hierarchy).

NUM_IMPORTS = Hi
Historical

data set (PVS)

NESTING = High
A

CMPLX = High

Subsell

Subsetl.l Subsetl.2

Subset2

Subset2.2

Subset3

Subset 1.1 Subset 1.2 S u bset2. I Subset2..2

Extracted subset k "Subset of" relationship

Figure 4: An Example of OSR Hierarchy

Each path of the hierarchy represents a path that the extraction process may have taken during OSR.
Accordingly, each path is characterized by an ordered conjunction of predicates, i.e., a pattern. Each
final extracted subset (i.e., leaves of the hierarchy) forms a probability distribution across the dependent
variable range. This distribution is a valuable piece of information and can be used in several ways. For
instance, if the dependent variable is discrete, the dependent variable class containing the largest number

10014023L 2-14

of pattern vectors may be selected as the most likely class for the new object's Y value to lie in.
Alternatively, we may consider using a Bayesian approach. That is, we could define a loss/risk function
[-BBT92] and select the dependent variable class yielding the minimum expected loss. Finally, note that
several leaves may have distributions that yield contradictory or dissimilar trends. Therefore, several
pattern classifications (i.e., hierarchy leaves) are used to make a final global classification based on
predef'med decision rules. In order to perform such decisions effectively, we need to be able to evaluate
the accuracy of the identified patterns (e.g., hierarchy branches). This is the topic of the next subsection.

2.3 Assessing the Accuracy of Patterns

In order to generate patterns and assess their accuracy, we use OSR in the context of the technique called
V-fold Cross Validation ['BF+84]. For each pattern vector pv in the historical data set, we can run the

OSR algorithm using PVS- [pvi}as the initial data set and using the measurement vector composingpv
as my. The pattern vectorpv is removed from the data set in order to avoid any bias in the results. Thus,

each time we run OSR, we know the actual value of the dependent variable we are trying to classify.
This allows us to not only extract specific patterns for each pattern vector in the data set, but we are also

able to classify each generated pattern as right or wrong at the time it is generated. The set of patterns
generated through this iterative process forms a representation of the trend's observable on this particular
data set which we will call a Specific Pattern Set (SPS).

The SPS may be viewed as a hierarchical model (see figure 4) of the historical data set. Many of the
patterns in the SPS will be the same or similar and will therefore form classes of patterns. For each of

these classes, based on the SPS, we can evaluate statistics such as pattern reliability (i.e., percentage of
correct classification when the pattern is used) and pattern reliability significance (i.e., the probability
that the observed reliability is greater than or equal to the one expected through a random classification

by chance). These statistics can then be used to evaluate the pattern based predictions as explained in the
subsequent paragraphs. Thus, even though incomplete / partial information is available in the historical
data set, accurate patterns may still be generated in some cases.

Recall that we assumed the patterns generated by OSR have the following ordered conjunctive normalform:

Predicatel ^ Predicate2 A ^ PredicateN

ALso, recall the order in which the predicates appear is relevant in order to determine the contexts where

they are relevant. A predicate is relevant only when the conditions defined by its preceding / parent
predicates (i.e., the context of a predicate) are true.

Let ClassYi be dependent variable class i. Let T be the number of generated pattern instances Patternj
that predict ClassYi. Let C be the number of pattern instances which correctly predict ClassYi (based on
the actual Y value of the pattern vector for which the pattern was produced).

Then we define the reliability of Patternj with respect to the dependent variable class ClassYi as:

R [ClassYi ; Patternj] = C / T

The probability that a pattern appears T times yielding a particular classification ClassYi C times
correctly by chance (P(C,T,p)) can be expressed by the binomial distribution:

T ! c,. _r-e
P(C,T,P)=c !(T_c)!p ti_p)

10014023L 2-15

where, p = p(ClassYi), i.e., the prior probability that the value of the dependent variable is in ClassYi.

If the pattern reliability R is equal to 1.0, then the binomial equation can be simplified and the level of

significance is simply pr. If R is below one, then the pattern reliability significance RS can be calculated

using the following formula:

T-C
RS=]_P(C + j;T;p)

]=0

Example 12: For a given pattern, suppose that:

C = 10 (the number of times that the pattern was correct during the
V-fold Cross Validation)

T = 12 (the total number of times the pattern was generated)

Also, suppose that there are exactly two dependent variables classes and an uniform distribution
in the historical data set, so that the prior probability of a pattern predicting each class is 0.5 for

each dependent variable class.

Then, using the above formulas, this pattern has the following reliability and reliability
significance.

R = 0.83

RS = 0.019

Since we are able to differentiate significantly reliable patterns from the non-significant and/or unreliable
ones, we are able to know the reliability of a classification when we make it. That is, when we are trying

to assess a new object, we run the OSR algorithm using that object as the measurement vector. This
process extracts a set of patterns specific to that object. Then, when making a classification for this
object, we know that a classification based on a reliable pattern with a sufficient level of significance
(e.g., RS < 0.05) is believable, whereas, one based on a reliable pattern with a poor level of significance
is not.

Thus, our decision process is based on the R's and RS's of each pattern in the hierarchy. Pattern

reliability is used for classification while the variations in pattern entropy are used for interpretation.
Although a reliable panem always shows a low entropy, the opposite is not true (for reasons beyond the
scope of this paper).

Note: a poor reliability means that a pattern is not robust to "noise" (i.e., the dependent variable
variations created by non-measured phenomena). A poor reliability significance may mean that the

pattern is a result of noise or more complex phenomena resulting from the OSR process (again beyond
the scope of this paper.

2.4 Support for Interpreting Patterns

As we have seen patterns are useful for classifying variables of interest. However, more importantly,

they are also useful in providing understandable / interpretable models. Patterns are much easier to
interpret than regression coefficients. First of all, OSR takes into account interactions between
explanatory variables, i.e., the fact that an explanatory variable can have a strong impact in a certain
context and not be relevant in another one. These interactions do not have to be known before building

10014023L 2'16

the modelasopposedto interaction termsin logistic regression[HL89]. Secondly,aswe will see,a
process(describedbelow)canbedefinedto showstrongassociationsthatexist in agiven context(this
is neededto satisfyR4of [BBT92]). Finally, thevariationinentropygeneratedby aparticularpredicate
canhelp assessthesignificanceof the impactof an explanatoryvariable (on thedependentvariable)
within acertaincontext.However,interpretingtherawpatternswouldforcetheusertodealwith useless
complexity. Many of thesepatternsaresimilar andshouldnot bedifferentiated.This canpreventthe
user from getting a clear picture of the model trends.Therefore,the patternsgeneratedby the OSR
processneedto begroupedin orderto makethemmoreeasilyunderstandableandinterpretable.This can
bedoneusinga formally definedstatisticalprocess(describedbelow)wheretheuserfixes thedesired
level of "similarity" betweenpatternby assigningvaluesto a smallsetof parameters.

Let us define two patterns PT1 and PT2:

PTI: Predi -,^ Predj

PT2: Predi ^ Predk

Suppose in the context where Predi is true, the pattern vector subset for which Predj is true happens to
show a strong association with the one for which Predk is true. This implies that these predicates

capture basically the same phenomenon. The strength of the association can be assessed by using
normalized Chi-squared based statistic such as Pearson's Phi [CA88]. A Chi-squared test can be
performed to assess the statistical level of significance of such an association. The two patterns will be

merged into one signifying that the selection of one predicate, or the other, during the OSR process,
occurred randomly. This is a result of slight differences between the two predicates and therefore
distinguishing between them does not help in the understanding of the object of study. This

phenomenon is mainly due to complex interdependencies between Xs that are often underlying the
software engineering data sets.

In order to decide whether or not two strongly associated predicates should not be differentiated, the
user declares a Phi value which represents the minimal degree of association necessary to assume two
predicates as similar. This process of merging patterns based on the similar predicates principle yields

the resulting pattern PT{ 1,2} which contains the composite predicate (Predj v Predk) implicitly
meaning that its two component predicates are interchangeable in this context.

PT{1,2}: Predi _ (Predj v Predl0

Let us define a composite predicate to simply be a disjunction of predicates.

Examplell: Assume that in
most of the components with a
volume V. PT1 and PT2 will

position predicates (who are in
the user.

the context of a subsystem that has for focus data processing,
large number of SLOCs are also the ones with a large Halstead's
be merged if the level of association between the two second

this case singletons) is higher than the "Phi" threshold defined by

PTI: SUBSYSTEM e

PT2: SUBSYSTEM

PT{ 1,2}: SUBSYSTEM

REAL-TIME CONTROL ^ V • LARGE, R = 0.90, RS = 0.06
...4

REAL-TIME CONTROL ^ SLOC • LARGE, R = 0.92, RS = 0.07
--4

• REAL-TIME CONTROL A (V E LARGE v SLOC • LARGE)
-.-4

10014023L 2-17

R = 0.91, RS = 0.01

In this situation where PT1 and PT2 are both reliable but show a small number of occurrences in
the specific pattern set (see previous section), then they will be associated with weak levels of

significance (RS). Merging them will increase this level of significance and keep the reliability
(R) constant if the used Phi threshold is high enough.

Automated merging of similar patterns can be performed if the user provides either a Phi value or a level
of significance that corresponds to an unambiguous definition ofpanern similarity.

In a similar manner, we can define a second merging principle. Suppose we have the same two patternsas defined above:

PTI: Predi -.APredj

PT2: Predi A Predk
...¢

However, this time suppose that Predj is the singleton predicate X1 E Classkm and Predk is the

singleton predicate X1 E ClasSkn where ClasSkm is a neighbor class of Classkn (their boundaries may

overlap). In this particular case, ff the two patterns characterize subsets with no statistically significant
difference in distribution on the dependent variable range, then they can be merged. This is because the
variation from one class to the other seems to have a non-relevant effect on the dependent variable under

the context where Predi is true. Therefore, in order to assess if merging is possible, the probability that
differences between distributions are random is calculated. For each dependent variable class, the

proportions of pattern vectors are compared between the two distributions by calculating the probability
that difference in proportion is due to randomness. If for all dependent variable classes, the resulting
minimum probability is above a user-defined critical probability value, we accept the hypothesis that
there is no significant difference between the two distributions. In the tool developed to support the OSR
approach, this is calculated through a binomial test for proportions.

Examplel2: Assume that in the context of components with a large number of SLOCs and a

large Halstead's volume V, the programmers experience of the programming language (ordinal
factor on a scale 1-5) is a significant factor. Both PT1 and PT2 show a first position predicate
which is the result of a previous merging according to the first principle presented above. Their
second position predicate is similar but not identical. PT1 and PT2 will be merged into PT{ 1,2 }
if the level of similarity between the two second position predicates (who are in this case
singletons) is higher than the threshold defined by the user.

PTI" ('v' E LARGE v SLOC E LARGE) -.AEXPERIENCE E [1,2)

PT2: (VE LARGE v SLOC E LARGE) -,AEXPERIENCE E [2,3)

PT{ 1,2}: (V e LARGE v SLOC E LARGE) --,AEXPERIENCE _ [1,3)

Both of the merging principles defined above can be used simultaneously in order to obtain more
significant and interpretable patterns. However, the merging process using both of them must be

carefully defined. We have built a prototype tool where such mechanisms have been completely
automated. A more precise definition of the pattern merging algorithm is presented in Appendix rl.

10014023L 2-18

3 Validating the Approach

In order to validate the OSR approach, we need to compare it to standard modeling processes that can be
used for classification: logistic regression [I-/L89], classification trees [$92].

Our definition of a high risk component (procedure or function) is: any software component where

errors were detected during system and acceptance test. Low risk is used to identify the remaining
components of the system. In particular, we wish to build models that identify high risk components for
a particular category of errors: ones that characterize an incorrect reading or writing in a variable or a data
structure.

3.1 Data Description

The data set was created using data collected from 146 components of a 260 KLOC Ada system. We
selected randomly an equal number of both low and high risk components in the used data set. This was
done in order to construct unbiased classification models. We selected all the high risk components
identified during test phases and we randomly introduced an equivalent number of low risk components

among those available. A larger number of low risk components in the data would lead all modeling
techniques to generate models more accurate for the low risk class and would therefore provide mediocre
models for the high risk class (i.e., their results would not be representative of the actual capability of
the models in terms of accurately identifying high risk components).

The explanatory variables used to construct the models are static code and design metrics. Some of these

metrics are taken from a project whose goals were to build multi-variate models of software quality
based on architectural characteristics of Ada designs [AES90,AE92,AE+92]. Others are well known
component level complexity and size measures[BP84]. We will first summarize the architectural

approach to measurement taken in this project and then define the assumptions upon which the analysiswas conducted.

The architectural view of the Ada system can be derived by identifying the major components of the
system, and determining the relationships among them. The library unit aggregation (LUA), or the
library unit and all its descendant secondary units [AES90], provides an interesting concept for an Ada

system. Relationships between LUAs can include the importing relationship, or the relationship between
an instantiation and its generic template. The increased use of Ada as a design as well as implementation
language provides an opportunity to better assess the final product in its intermediate stages. Since the

design and the final product are written in the same language we can use tools developed for analysis of
Ada source code to provide an automated means for analyzing Ada designs. This automation is essential
if one is to frequently measure and assess the design.

The metrics used in this study are derived from the architecture of the system, and were obtained by an
automated static analysis of the source code using the ASAP static analysis program [Dou87], UNIX
utilities, and the SAS statistical analysis system. At the heart of the measures are counts of declarations

in an LUA - whether they are declarations made in the LUA, declarations imported to the LUA (i.e.,
declarations made in another LUA made visible by a clause), declarations exported by the LUA"with"

(i.e., declarations made in the library unit, and visible to other units that import the LUA), or
declarations hidden from these importing units (i.e., declarations made in the body and suburfits).

The collection of metrics were developed from hypotheses about the nature of the software design
process and further details can be found in [AES90,AE92,AE+92]. These, in addition to other raw

measures extracted from the source code were used in this study. The metrics include ratios designed to
indicate the extent of context coupling, visibility control, locality of imports, and parametrization. These
characteristics are based on the following underlying assumptions:

10014023L 2-19

• Assumption 1 (Context coupling): Importing and/or exporting large amdunt of declarations may
require complex interfacing with the other LUA's of the system and is expected to be an error-
prone factor.

• Assumption 2 (Parametrization): The average number of parameters per program unit
declaration in the LUA should have an impact on the probability of generating defects. The larger
the pararnetrization of the LUA, the larger the number of abstractions to be dealt with, the greater
the difficultly for a designer or a programmer to keep in memory their respective role, the more
complex it becomes to handle interaction with others LUA's.

• Assumption 3 (Visibility control): The ratio of cascaded imports (declaration imports to a unit
and whose visibility cascades to it's descendent units[AE+92]) to direct imports in the LUA.
This concept captures the extent to which declarations are imported to where they are needed in
the LUA. The larger the number of visible declarations unrelated to the problem addressed at a
particular location in the LUA, the larger the risk of confusion or misunderstanding of those
program abstractions.

• Assumption 4 (Reuse): A high ratio of reused code in a LUA denotes the familiarity /
understanding with the problem addressed and the computer-based solution, i.e., the LUA
interface with other LUA's, its component interfaces and its data structures. This is expected to
lower the probability of defect.

In addition to the architectural metrics mentioned above, two main categories of component complexity
metrics may be identified as well: size of the component and the structural or control flow complexity of
the component.

• Assumption 5 (component size): Different measures of size were used: the total number of Ada
statements, the number of executable Ada statements and the number of source lines of code.

Size measures have shown in the literature to be related to the probability of generating defects
[SP88, MK92].

• Assumption 6 (structural complexity): The structural complexity of the code should affect the
probability of generating complex defects undetected during early walkthroughs and unit test.

3.2 Evaluating the Accuracy of the Models

We compare the results obtained using logistic regression and classification trees with those found using
Optimized Set Reduction. The fully automated OSR process was used to generate the set of patterns
partially presented in Section 3.3. For each modeling approach, a V-fold cross validation procedure was
used [BF+84]. Each pattern vector was successively removed from the dataset. The model was built
using the remainder of the data.set and then used to predict the pattern vector extracted. The prediction is
compared to the actual and this is repeated for each pattern vector in the dataset. Unless the available
dataset is large, this validation method is preferable: this is an objective validation method (i.e., no
arbitrarily selection of test sample) that allow model evaluations with a maximum number of
observations.

The variable selection process used for building the regression models was a stepwise selection process
with a predetermined selection criterion of p = 0.05. Dummy variables [DG84] were created in order to
deal with discrete explanatory variables. Principal components [DG84, HL 89, MK92] have been
extracted and used in an attempt to optimize the accuracy of the regression models. Two regression
models were built. The first one is based exclusively on the original explanatory variables. The second
one uses, as explanatory variables, the generated principal components which are linear functions of the

10014023L 2-20

original explanatory variables, where each is orthogonal with respect to the 6thers. With respect to
classification trees, the algorithm provided by the S-PLUS system [$92] was used and the parameters

controlling the tree construction were tuned in order to get optimal accuracies. However, this process
was quite tedious since no guideline or rational exists for tuning these parameters despite the great
instability of the generated trees.

When comparing modeling techniques with respect to identifying high risk components, two different

evaluation parameters must be considered simultaneously. Assume that when a high risk component is
identified, a remedial action is taken during the testing phase (e.g., more expensive and more effective
code reading technique) and that the benefit of this remedial action is validated and quantifiable. We have

to consider the completeness of the model (i.e., the percentage of high risk components identified by the
model. The benefit of this remedial action on the development process quality will be a function of
completeness since the larger the number of high risk components identified, the higher the error

detection rate. Also, the correctness of the model (i.e., the percentage of components identified as high
risk that are actually of high risk) allows the user to quantify the waste of resources due to the
unnecessary applications of remedial actions.

Table 1 shows these two parameters for logistic regression, classification trees and Optimized Set
Reduction. OSR appears to be more accurate than both logistic regression and classification trees with
respect to all the criteria considered. We conclude that the benefits of the remedial actions taken when
!dentifying high risk components are increased using OSR. These results seems to indicate an

zmprovement of the OSR algorithm when compared with the earlier version presented in [BBH92]
where there was no significant accuracy differences when compared with logistic regression.

The results shown in Table 1 have been obtained following the classification rules below:

• Logistic regression: ff the calculated probability of a component belonging to the high risk class
was below 0.5, the low risk class was selected. Otherwise, the high risk class was selected.

• Classification trees: The risk class was selected based upon the proportion of non-faulty and faulty
components in the matching tree leaf.

• OSR: For a given component, all the significantly reliable extracted patterns were considered for

performing the classification. If those patterns all showed a high probability in the same risk class,
then that class was selected. Otherwise, the risk class characterized by the pattern subset with the

highest average pattern reliability was selected. If none of the extracted patterns happened to have a
reliability significantly different from the random expected reliability, then the component was
considered undetermined and thus classified randomly among the two risk classes.

By selecting biased cla.ssification rules (e.g., 0.4 decision boundary for logistic regression), the model
completeness and correctness could be modified. However, when completeness increases, correctness

decreases and vice-versa. The best correctness / completeness tradeoff depends on the particular
application of the model. The results below were obtained using unbiased classification rules.

Motlei

Optimized Set Reduction

Classification trees

Logistic regression without

Principal components

Logistic regression with

Principal components

Correctness Completeness

92.11% 'i70 / 76) 95.89% (70 / 73)

83.33% (60/ 72 82.19% (60/73)

76.56% (49/ 64) 67.12% (49/73)

80.00% (52 / 65) 71.23%' (52 / 73)

10014023L 2-21

Table 1: Model Accuracies

3.3 OSR Patterns' Interpretations

Comparison between the interpretability of logistic regression equations and OSR patterns may be found
in [BTH93]. Issues associated with classification tree interpretation are discussed in [BBT92]. In this
section, we illustrate and evaluate the interpretability of OSR patterns. Some of the patterns

characterizing "data value / structure" errors will be described in order to illustrate the interpretation
process in the OSR context. Patterns will be presented in a format facilitating their readability. Class
boundaries will not be shown since they are not meaningful to the reader. Instead their corresponding

quantiles on the explanatory variable range (in the appropriate context) will be used to describe
predicates.

3.3.1 Regression Equation

The regression equation generated is as follows:

LOg(l__Pp)= 0.337 + 0.0103 SLOC - 0. 00107 LUADA-1.8274 LUFREUC

where p = Prob(component is high risk))

One of the main problems of logistic regression models with respect to their interpretation is the inherent
instability of regression coefficients when the underlying assumptions of the model are not met (see
[BTH93] for example and details). In some cases, looking at the correlation matrix may help avoid the

problem when interpreting. Another related problem is that many good predictors were not selected by
the stepwise selection process because of a strong correlation with already included parameters. In order
to interpret the regression equations, the user has to look carefully at the correlation matrix and the
regression equation in order to have some meaningful insight into the associations between explanatory
variables and the dependent variable. Instability may be due to other causes like over'influential data

points (outliers) or interactions between explanatory variables [DG84, HL89].

We will demonstrate in the next paragraphs that, on our dataset, logistic regression does not extract a lot
of the information which is provided by the data set. Some of the assumptions made in 3.2.2 will be

supported by the OSR patterns.

3,3.2 Patterns for Data Value / Structure Errors

The patterns listed below are the ones that seemed to conf'u-m the assumptions stated in section 3.1. Our
goal was not to make assumptions based on the generated patterns since this is a risky and dangerous
approach to data analysis, i.e., exploratory data analysis. As a matter of fact, many of the generated
patterns were not clearly understandable to us and did not fit in our list of assumptions. Generating
interpretable patterns does not imply generating easy to understand patterns, which is due to the indirect
and complex nature of some of the statistically significant associations extracted from our data sets.
Moreover, since statistical models do not deal with causality, interpretation becomes an even more

sensitive process.

Patterns are grouped according to the assumption they support. For each pattern presented, the entropy
associated with each predicate (here singleton predicates) is shown just below the predicate itself.
Patterns were generated entirely automatically without human intervention. As opposed to the
classification tree approach [$92], no "tuning" of the algorithm was necessary since the parameters of
the OSR algorithm are all intituively meaningful (e.g., user set statistical levels of significance for

10014023L 2-22

differentiating distributions) and can be set at once. The predicates' value interv_s have been calculated

automatically according to the procedure described in Section 2.2.1. This approach for handling
predicate intervals automatically and dynamically (classes change in various contexts) gives more
meaning to the interpretation of the OSR patterns. The first group of patterns is commented in detail in

order to remind the reader about how to read these patterns. A definition of the metrics appearing in the
patterns presented below is provided in Appendix I.

• Pattern Group 1: Complex code within a largely reused LUA (Assumptions 4 and 6)

NDMAX _ [52% - 100%] A LUFREUS _ [0% - 71%] _ High Risk-4

H = 0.89 H = 0.73

NDMAX _ [52% - 100%] A LUFREUC _ [0% 81%] =:_ High Risk--4 °

H = 0.89 H = 0.75

Picking those components with a relatively small amount of reuse within the subset whose maximum

statement nesting level is high implies a high probability that the component will be in the high risk class(i.e., to generate errors).

The individual impact of predicates (here all singletons) on the risk (i.e., probability to be in the high
risk class) can be quantified by looking at the entropy variation they generate. NDMAX _ [52% -
100%] creates a variation of entropy of 0.11 (from 1.0, the initial set entropy, to 0.89). In this context,
a variation of entropy of 0.16 can be observed for LUFREUS e [0% - 71%] (from 0.89 to 0.73).
However, there is no strong evidence that the amount of reuse in a LUA is a high risk characteristic

when NDMAX _ [52% - 100%] . In other words, this pattern group seems to indicate that

architectural reuse pays off in terms of defect probability only in the context of complex components.

• Pattern Group 2: Large compilation units within a LUA with a high level of parametrization
(Assumptions 2 and 6).

(SLOC _ [57% - 100%] v V _ [54% - 100%]) A LUPARPD _ [53% 100%] _ High Risk-4

H = 0.84 H = 0.46

LUPARPD is an indicator of the average program unit interface complexity within a particular LUA.
This complexity seems even more difficult to handle for large components (i.e., large number of lines of

code, operands and operators). Based on the process defined in section 2.4, the reliability of this pattern
has been assessed at 100% and appears to be significant at RS = 0.06. Since this data set is small,
relatively few patterns show significances below 0.1. Here again, there is no strong evidence that

LUPARPD is a high risk characteristic in the context of small components. Large components with
complex interfaces are risky while small components do not seem to be strongly affected.

• Pattern Group 3: Large and complex compilation units within a LUA containing high quantities of
cascaded imports (Assumptions 3, 5 and 6).

(SLOC E [57% - 100%] x/ V E [54% - 100%]) ^ LUACTMAX E [64% 100%] _ High Risk-4,

H = 0.84 H = 0.0

NDAV_ [65%- 100%] A LUCMIMP E [36% 100%] _ High Risk-4

H = 0.92 H = 0.0

Importing large quantities of cascaded declarations se.ems to significantly increase the risk of defects

even in the context of large and/or complex components, i.e., large number of lines of code, operands

10014023L 2-23

and operators. Once again, small components do not seem to be affected.

In this pattern, the first predicate is an example of composite predicate and is the result of the merging
process. Phi (i.e., the merging criterion) was fixed to 0.7.

• Pattern Group 4: Complex compilation units in the context of a LUA that exports/imports large

quantities of declarations towards other LUA's (Assumption 1, 5 and 6).

LUWBYCU E [79% - 100%] A DOBJ E [46% - 100%] _ High Risk

H = 0.78 H= 0.34

LUWBYCU • [79% - 100%] ^ VG • [26% - 100%] _ High Risk

H = 0.78 H = 0.44

LUCC • [93% - 100%] _ High Risk
H = 0.0

This pattern group seems to indicate that interfacing with other compilation units in order to export
complex compilation unit (i.e., large number of declared / defined variables or a large cyclomatic
complexity) shows a high defect risk. These patterns illustrates how the notion of context can play an
important role when determining the impact of an explanatory variable. This shows that when one wants
to validate assumptions, the answer may not be as simple as yes or no. In our particular example, most
of the assumptions would not have been validated by simply looking at the regression model [CAP88].

• Pattern Group 5: When average statement nesting level is high, the "size" of the component is large
and this component has an ALgorithmic / COMPutational functionality (according to the NASA SEL
taxonomy), then there is a high probability that the component is high risk. Note that this is an example
of the use of non-singleton predicates.

NDAV • [65%- 100%]

H = 0.92

^ (ALCOMP YES ^ (SLOC • [15% - 100%] v V • [19% - 100%] v

TOTASTMT • [23%- 100%]))
H = 0.75

4 Conclusions

Five main conclusions can be drawn from this paper:

(1) Based on a rather small and incomplete data set, i.e., 146 Ada components, a completeness and a
correcmess above 90% has been obtained by using the OSR modeling process. If this level of

accuracy is not sufficient, the user can tune the decisions boundary so he may increase either the

correcmess or completeness according to her/Iris specific needs.

(2) OSR Patterns appear to be more stable and interpretable structures than regression equations
when the theoretcal underlying assumptions are not met. Taking effective corrective actions is only
possible when the impact of controllable factors on the parameters to be controlled (e.g., cost,

quality) can be fully understood and quantified.

(3) OSR Patterns seem to generate a more complete set of information, i.e., validate more

assumptions, than the logistic regression equation. This may be partially corrected by look.ing at the
explanatory variable correlation matrix. However, this is an extremely tedious and not always

10014023L 2-24

helpful task, e.g., issues like interactions between explanatory variables am sull not addressed.

(4) OSR classifications were found to be more accurate than logistic regression equations. This also

confirms previous studies showing similar results for other kinds of applications [BBT92, BTH93].
Therefore, the Optimized Set Reduction approach seems to be a good alternative and/or complement
to multivariate logistic regression in this application domain.

(5) OSR classifications were found to be more accurate than a classification tree. This also confirms
earlier results we obtained on the datasets used in [BTH93] where classification trees were
performing poorer than both logistic regression and OSR. These results seem to suggest that the
classification tree structure, even though simple to generate and use, might be too simplistic for
modeling complex artifacts such as high risk components.

From a more general perspective, the OSR approach is a data analysis framework that successfully
integrates statistical and machine learning approaches in empirical modeling with respect to specific
software engineering needs: it provides support for dealing with both partial information, model
interpretation and is not based on a severely constraining set of hypotheses.

5 Acknowledgments

We would like to thank William Agresti, Frank McGarry and .Ion Valett for their support in providing
the data used in this analysis. Also, we would like to thank Sandro Morasca and William Thomas for
their numerous comments that helped improve both the content and the form of this paper.

I0014023L 2-25

References

[Agr90] A. Agresti, Categorical Data Analysis, John Wiley & Sons, 1990.

[AES90] W. Agresti, W. Evanco, and M. Smith, "Early Experiences Building a Software Quality
Prediction Model", Proceedings of the Fifteenth Annual Software Engineering Workshop, November,
1990.

[AE92] W. Agresti and W. Evanco, "Projecting Software Defects from, Analyzing Ada Designs", IEEE
Trans. Software Eng., 18 (11), November, 1992 (to appear).

[AE+92] W. Agresfi, W. Evanco, D. Murphy, W. Thomas, and B. Ulery, "Statistical Models for Ada
Design Quality", Proceedings of the Fourth Software Quality Workshop, Alexandria Bay, New York,

August, 1992.

[BP84] V. Basili and B.T. Perricone, "Software Errors and Complexity: An Empirical Investigation,"
Communications of the ACM, vol. 27, no. 1, January 1984.

[Bas85] V. Basili, "Quantitative Evaluation of Software Methodology", Proceedings of the First Pan

Pacific Computer Conference, Australia, July 1985.

[BR88] V. Basili and H. Rombach,"The TAME Project: Towards Improvement-Oriented Software
Environments", IEEE Trans. Software Eng., 14 (6), June, 1988.

[BF+84] L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification and Regression Trees,
Wadsworth & Brooks/Cole, Monterey, California, 1984.

[BP92] L. Briand and A. Porter, "An Alternative Modeling Approach for Predicting Error Profiles in
Ada Systems", EUROMETR1CS '92, European Conference on Quantitative Evaluation of Software and

Systems, Brussels, Belgium, April 1992.

[BBH92] L. Briand, V. Basili and C. Hetmanski, "Providing an Empirical Basis for Optimizing the
Verification and Testing Phases of Software Development", IEEE International Symposium on Software

Reliability Engineering, North Carolina, October 1992.

[BTH93] L. Briand, W. Thomas and C. Hetmanski, "Modeling and Managing Risk early in Software
Development", International Conference on Software Engineering, Maryland, May 1993

[BBT92] L. Briand, V. Basili and W. Thomas, "A Pattern Recognition Approach for Software
Engineering Data Analysis", IEEE Trans. Software Eng., 18 (11), November, 1992.

[CA88] D. Card and W. Agresfi, "Measuring Software Design Complexity", Journal of Systems and

Software, 8 (3), March, 1988.

[Cap88] J. Capon, "Statistics for the Social Sciences", Wadworth publishing company, 1988

[CE87] J. Cench'owska, "PRISM: An Algorithm for Inducing Modular Rules", Journal of Man-Machine

Studies, 27, pp.349.

[DG84] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and Applications, Wiley and
Sons, 1984.

['Dou87] D. Doubleday, "ASAP: An Ada Static Source Code Analyzer Program", TR-1895, Department

10014023L 2-26

of Computer Science, University of Maryland, August, 1987.

[EA92] W. Evanco and W. Agresti, S atlsucal Representauons and Analyses of S,,oftware",
t! t " "

Proceedings of the 24th Symposium on the Interface of Computing Science and Statistics , CollegeStation, Texas, March, 1992.

[GK.B87] J. Gannon, E. Katz, and V. Basili, "Measures for Ada Packages: An Initial Study",
Communications of the ACM, 29 (7), July, 1986.

[HK81] S. Henry and D. Kafura, "Software Structure Metrics Based on Information Flow", 1EEE
Trans. Software Eng., 7 (5), September, 1981.

[I-IL89J D. Hosmer and S. Lemeshow, "Applied Logistic Regression", John Wiley & sons, 1989

['M83] R. Michalski, "Theory and Methodology of Inductive Learning." In R. Michalski, J. Carbonell &
T. Mitchell (Eds.), Machine learning (Vol. 1). Los Altos, CA: Morgan Kaufmann.

[MK92] J. Munson and T. Khoshgoftaar, "The Detection of Fault-Prone Programs" 1EEE Trans.
Software Eng., 18 (5), May, 1992.

[PA+82] H. Potier, J. Albin, R. Ferreol and A. Bilodeau, "Experiments with Computer Software

Complexity and Reliability", Proceedings of the Sixth International Conference on Software Engineering, September, 1982.

[Qui86] J. Quinlan, "Induction of Decision Trees", Machine Learning l, Number 1, 1986.

[Rom87] H. D. Rombach, "A Controlled Experiment on the Impact of Software Structure on
Maintainability '', IEEE Trans. Software Eng., 13 (3), March, 1987.

[$92] J. Chambers, T. Hastie, "Statistical Models in S", Wadsworth & Brooks/Cole Advanced Books
& software, Pacific Grove, California

[SP88] R. Selby and A. Porter, "Learning from Examples: Generation and Evaluation of Decision Trees
for Software Resource Analysis", IEEE Trans. Software Eng., 14 (12), December, 1988.

10014023L 2-27

Appendix I: Definitions of the metrics appearing in the paper

Library Unit Aggregation (LUA) metrics:

• LUACTMAX: total number of cascaded program unit declarations / maximum possible number of

cascaded program unit declarations

• LUCMIMP: cascaded imported program unit declarations / direct imported program unit
declarations

• LUWBYLU: number of library unit aggregations that contain a with statement to this compilation
unit

• LUWBYCU: number of compilation units that contain a with statement to this compilation unit

• LUPARPD: number of parameters per program unit declaration in the LUA

• LUFREUC: fraction of old (reused verbatim) number of components in the LUA

• LUFREUS: fraction of old (reused verbatim) number of SLOC's in the LUA

• LUADA: number of Ada statements in the LUA

• LUCC: unique Imported declarations / unique exported declarations

Compilation unit metrics:

NDMAX: maximum statement nesting level

NDAV: average statement nesting level

SLOC: source lines of code

V: Halstead's volume

VG: cyclomatic complexity

DOBJ: number of declared variables

10014023L 2-28

Appendix II: Algorithms

The Merging Algorithm

This merging process can be formalized using the following def'mitions and algorithms:

Recall the definition of predicate and composite predicate from section 2.1.1 and 2.4. Let cp represent a
composite predicate. Then, we define:

• Definition AI: A context (C) is an ordered conjunction of composite predicates that defines a
subset of pattern vectors PSS (i.e., PSS = SUBSET(PVS, C)).

C

• Definition A2: An association coefficient aij is an assigned statistical degree of association

between cpi and cpj in a data set PSS = SUBSET(PVS, C). Let PSSi = SUBSET(PSS, cpi) and let
PSSj = SUBSET(PSS, cpj).

A two row-two column contingency table is defined as shown in Figure 5.

PSSj PSS -PSSj

PSS i

PSS-PSS i

PSS i A PSSj [I PSS i A (PSS -PSSj)

(PS S-PS S i) A

(PSS-PSSj)

Figure 5: Predicate Association

Based on this table, a Chi-Square based statistic (Pearson's Phi), the degree of association between cpi

and cpj in PSS is calculated and assigned to a c . Note that this association coefficient is calculated in the

context of C (i.e., PSS = SUBSET(PVS, C)) and therefore is only valid under C.

• Definition A3: An association matrix A,C, is a square matrix of association coefficients calculated

under a context C, where the rows / columns are marked by composite predicates.

example: AC contains all a c, id e {1 n}

C
• Definition A4: Two composite predicates cpi and cpj are said to be similar in the context of C if aii

> PHI (the minimal level of association defined by the user).This association will be denoted as

10014023L 2-29

cpi = cpj.

• Definition A5: A predicate tree is a tree representation of the patterns generated when extracting the
specific pattern set (SPS) process. As mentioned is Section 2.4, the SPS is a set of patterns
representing the observed trends in the historical data set. It is expected that a significant number of

these patterns will be duplicated or similar. This representation is a compact way of representing the
SPS. Each path of a predicate tree represent a pattern (see Figure 6)

SPECIFIC PATTERN SET

X 1 e Class 1
X4_ Class 1
X
xl _ Class iClass I

AND X 3 eClass 2
AND X 2 Glass 3
AND X 3 eClass 2
AND X 5 e:Class 2

X 1 E ClasSl X 3e Class2
O - --

X 2 E Class3

X 5 E Class 2

Figure 6: Predicate Tree

Note that in the above example, all of the predicates are singleton. This could represent a predicate tree
which summarizes an OSR run. During the merging process, branches will be merged and composite
predicates created at the nodes.

• Definition A6: Two composite predicates cpi, cpj are said to be "mergable neighboring composite
predicates" if the following conditions are fulfilled:

(1) There exist two predicates Predm and Predn, where Predm = (Xi e classilc) and Predn = (Xi •

Classit) (both are singleton predicates) such that Predm and Predn are each disjuncts in cpi and cpj,
respectively.

(2) Classik and Classit are neighboring (or overlapping) classes on variable Xi domain.

(3) cpi and cpj yield similar distributions on the dependent variable range. (i.e., the level of
significance of the two distributions being different is above S (user clef'reed)).

If these three conditions are true, then MNCP(cpi, cpj, S) is TRUE.

We can now def'me the merging algorithm as follows:

10014023L 2-30

procedure MERGE (predicate tree, node, context, PHI, S)

(I) If (node is a terminal node of the predicate tree)
then RETURN

(2) while (3 cpl , cpj such that MNCP (cpl , cpj, S)) do

UNION(predicate tree, node, cPi , cpj)

(3) Calculate _context
mxm

(4) while (3 cPl , cpj such that cPi , cpj) do

select cPi and cpj such that aC_ ntext is the strongest association in _context
nlxm

• UNION(predicate tree, node, cPi , cpj)

recalculate _context
=m-I x m-I, the association matrix for

cPl ' cPi-l' cPi+l cpj -I' cpJ+l cPm, CPiu j in context.

(5) for each successor of node in predicate tree

MERGE (predicate tree, successor, context /%
__ CPnode, PHI, S)

end MERGE

In stop (4), a call _ made to procedure UNION w_ch _ defined as fo_ows:

procedure UNION (predicate tree, NODE, cpi , cpj)

(I) Form a new node marked by the composite predicate cPi U cpj (i.e., CPiuj)
(2) Delete nodes marked by cPi and cpj under NODE

(3) Combine all like subpaths rooted at CPiuj

end UNION

The merging proce_ is inida_d wi_ _e procedure call:

MERGE(predicate tree, root, _, PHI, S)

10014023L 2-31

Discretization Algorithm

Procedure parameter definitions:

• EV: the explanatory variable whose range is going to be discretized

• DV: the dependent variable of the model to be built
. dataset: set of pattern vectors to be discretize, d along the scale of variable
• criterion: maximum level of significance accepted to recognize two distributions as different
• classes: the definiton of the intervals (classes) on variable's range, i.e., a set of pairs of boundaries

procedure DISCRETIZATION (dataset, EV, DV, criterion, classes)

(I) sort dataset elements in increasing order according to elements'variable

values

(2) OPTIMAL_SPLIT(dataset, EV, DV, criterion, optimal_bound)

(3) if(dataset has actually been split in (2))

then {

(3.1) update the definition of classes with newly calculated

optimal bound

(3.2) extract two subsets ssetl, sset2 of dataset where

variable < optimal_bound and variable > optimal_bound,

respectively

(3.3) DISCRETIZATION (ssetl, EV, DV, criterion, classes)

(3.4) DISCRETIZATION (ssetl, EV, DV, criterion, classes)

)

end DISCRETIZATION

The procedure for splitting datasets may be defined as follows:

procedure OPTIMAL_SPLIT (dataset, EV, DV, criteria, optimal_bound)

for all data vectors V i in dataset (in sorted order)

{
Case i: there is a change in DV value but not in EV value

(homogeneous = FALSE }

Case 2: there is a change in EV value (from EVVI to EW2) and while EV

values remained constant and equal to EWl, homogeneous remained equal to

TRUE

(
/*
STEP1: calculate entropy of the distribution on the DV range for the

dataset subset lying in the interval strictly below EVV2 (SSET2)

STEP2: Calculate the level of significance of the difference in

distribution between dataset and EEET2.

STEP3: If the the level of significance is below criterion and the

entropy is below the minimal entropy calculated so far, then

optimal_bound is assigned with EVV2

*/

Entropy2 = H(SSET2, DV)

10014023L 2-32

s2 = DIFFDIST(dataset, SSET2, DV)

if(Entropy2 < H(dataset, DV) and s2 < criterion)

then optimal_bound = EVV2

Case 3= there is a change in EV value (from EVVI to EW2) and while EV

values remained constant and equal to EVVI, DV values changed at least once

and homogeneous = FALSE

{
/*

SSETI is the dataset subset lying in the interval strictly below _r'gVl.

STEP1: calculate entropy of the distribution on the DV range for the

dataset subset lying in the interval strictly below EVVI (SEET!)

STEP2: Calculate the level of significance of the difference in
distribution between dataset and SSETI.

STEP3: If the the level of significance is below criterion and the

entropy is below the minimal entropy calculated so far, then
optimal_bound is assigned with EVVl

STEP4: repeat same procedure as above for SEET2

STEP5: set homogeneous to TRUE

*/

Entropyl = H(SSETI, DV)

sl = DIFFDIST(dataset, SSETI, DV)

if(Entropyl < H(dataset, DV) & Entropyl< optimal_bound & sl < criterion)
then optimal_bound = EVVI

Entropy2 = H(SSET2, DV)

s2 = DIFFDIST(dataset, SSET2, DV)

if(Entropy2 < H(dataset, DV) & Entropy2 < optimal_bound & s2 < criterion)
then optimal_bound = EVV2

homogeneous = TRUE;

Case4: no change in DV value

/* Do nothing "/

} /* end of for loop */

end OPTIMAL_SPLIT

10014023L 2-33

"'_-J / /

N94- 35436

Modeling and Managing Risk Early in Software Development =

Lionel C. Briand, William M. Thomast and Christopher J. Hetmanski

Department of Computer Science

University of Maryland, College Park, MD 20742

=-"
//

Abstract

In order to improve the quality of the software
development process, we need to be able to build
empirical multivariate models based on data collectable
early in the software process. These models need to be
both useful for prediction and easy to interpret, so that
remedial actions may be taken in order to control and
optimize the development process. We present an
automated modeling technique which can be used as an
alternative to regression techniques. We show how it can
be used to facilitate the identification and aid the
interpretation of the significant trends which characterize
"high risk" components in several Ada systems. Finally,
we evaluate the effectiveness of our technique based on a
comparison with logistic regression based models.

1 Introduction

It is often noted that a small number of software
components are responsible for a large part of the
difficulty during software development. In light of this
relationship, there have been a number of studies that
focus on the development and use of models to identify
these "high risk" components [PA+82, SP88, BIX)2,
MK92]. There are two different aspects to be treated
when one builds a risk model. F'trst, metrics that are
good predictors of risk should be defined and validated.
Second, a suitable (in terms of underlying assumptions)
modeling technique shouldbe used so that prediction is
accurate and interpretation possible. Once these "high
risk" components have been identifw,d, the development
process can be optimized to reduce risk. This can be
performed from various perspectives of risk, e.g, number
of errors, error density, associated cost of change during
either testing or maintenance. For example, additional
testing can be applied to those components that have
been determined to be likely to contain a high density of
defects.

*This work was supported ia part by NASA grant NSG-5123

fALso with The MITRE Corp., McLean, VA.

Process improvement in terms of the prediction of
defects in the delivered product is one area that has
received a significant amount of attention recently
[SP88, MK92]. Recent studies have focused on the

identification of problem areas during the design phase,
noting that the software architecture is a major factor in
the number of errors and rework effort found in later
phases [HK81, ROM87, CA88, AES90]. If such
potential problem areas can be detected dining the design,
as opposed to during implementation or test, the
development organization may have more options
available to mitigate the risk. For example, rather than
intensively testing the "problem components", one
might restructure the system to avoid the potential
problems entirely. While this may be an option during
the design phase, it is a very unlLkely scenario late in the
implementation phase.

Thus our goal is to use measures of the design phase to
determine potential problem areas in the delivered
product, and allow for a wide range of
preventive/corrective actions to be taken. Examples of
these types of actions include increasing testing,
providing additional documentation, re-designing a part
of the system, and providing additional training.

We need a modeling process that will allow for the
reliable detection of potential problem areas and for the
interpretation of the cause of the problem so that the
most appropriate remedial action can be taken. In this
context, we will examine the use of the following
modeling app--:

• Logistic regression, which is one of the most
common classification techniques [Agr90]. This
technique has been applied to software engineering
modeling [MK92], as well as other experimental
fields.

• Optimized Set Reduction (OSR), which is based on
both statistics and machine learning principles
[Qui86]. This approach has been developed at the
University of Maryland and has been applied in several
software engineering applications [BBT92, BBH92].

10014023L 2-35

pIII_IIO'ING PAGE BLANK NOT FIL_f.D
,=_... _ - "3 t '"T',"r,, _,........ , ,

Both techniques will be evaluated with respect to their
accuracy, consualnts of use and ease of interpretation. In
summary, we intend to show that OSR may be used as
an alternative to logistic regression to generate models
using architectural metrics which can be used to control
a software development project. Through the
interpretation of OSR model, we will demonstrate how
OSR can be useful in performing exploratory data
analysis. Also, we will show that OSR models will
allow one m predict and explain, at an early stage, where
and why difficulties are likely to occur within the system
architecture. Thus, planning, managing resources and
quality control can become more effective.

This paper presents the results of an investigation into
the use of the two different modeling techniques to

support the identification and understanding of high risk
components in Ada designs. Section 2 will define the
notion of components that we used in this study of Ada
systems, identify what we had targeted as "high risk',
and present an overview of the modeling techniques.
Section 3 will present the architectural metrics that were
used in the study, and describe the underlying principles
on which they are based. Section 4 presents the
predictive accuracy of each technique, while section 5
discusses and provides interpretations of the models.
Section 6 presents the major conclusions of the study.

to isolate and understand. Similarly, a component was
placed in the high completion cost class if there is a
defect associated with it that required mote than one day
to complete the error correction, once it had been
isolated. The reason for the use of these two models is to
better understand the major influences in error isolation
difficulty and error completion difficulty, which are
likely to be different. These definitions of high cost
components provide a more useful notion of difficulty to
a project manager. The statement "there is likely to be
defect associated with this component, and its going to
be hard to fix", is a much stronger statement than "there
is likely to be defect associated with this component."

A randomselectionofapproximately150 components

from three Ada systemswas used to calibrateand
evaluatethetwomodelingtechniques(logisticregression
andOSR). Our notionofa "component"isdescribedin

section3.An equalnumberofcomponentswerechosen
fromthetwo classesinordertoensuretheconstruction
ofunbiasedmodelsandtherebyfacilitatetheirevaluation

andcomparison.Foreachcomponent(X)inthesample,
a model was developed based on the remaining

components({Sample - X}) and used to "predict"
whether the component (X) is likely to be in the high
risk class. This model validation method, known as V-
fold cross-validation [131:+84], is commonly used when
data sets are small.

2 Experiment Design and Modeling
Techniques

2.1 Objectives of the Study

The data used in our analysis originates in the
NASA/Goddard Space Flight Center Flight Dynamics
Division. A number of Ada systems have been built in
this environment, and a wealth of data has been collected
on their development, ranging from items such as
component reuse, to error origins, and to the amount of
effort spent performing various development activities.

A research project at the MITRE corporation studied a
number of these Ada systems, and related characteristics
of software architecture to quality factors concerning the

presence of defects, the difficulty in correcting defects,
and the difficulty in adapting the system to changes
[AESg0, EA92]. Several regression-based models have
been developed to predict quality factors from
architectural characteristics. These models tackled issues
such as identifying error-prone or difficult to modify
components. We defmcd the notion of a high risk
component based on a combination of the above two
quality factors. We defined two classes, high isolation
cost, and high completion cost, and built models for
each. From change report form data, a component would
be placed in the high isolation cost class if there is a
defect in the component that requires more than one day

Characteristics of the design were used as explanatory
variables in order to build classification models of the
Ada components. These design characteristics are
identified in section 3 along with our definition of
software "component". The classification models will
identify the components where at least one error was
detected during system and acceptance test such that the
error isolation/correction effort required more than one
day. Two modeling approaches were evaluated- logistic
regression with a stepwise variable selection, and
optimized set reduction. The characteristics of each
technique are briefly described in the following
paragn_.

2.2 Logistic Regression

The first technique, logistic regression analysis, is based
on the following relationship equation [Agrg0]:

Iog(_p)_ = Co + CI * Xl + C2* X,+...+CN * X_

As an example, we can assume P to be the probability
of a component to be in the high risk class, i.e. is likely
to have at least one difficult error to cocrect., and the Xi's

m be the design metrics included as predictors in the
model. In the two extreme cases, i.e. when a variable is
either non significant or differentiates entirely the two

t0014023L 2-36

classes,thecurve(betweenPandanyXi)approximates
a horizontalline anda verticallinerespectively.In
between,thecurvetakesaSshape.However,sincePis
unknown,thecoefficientsC i will be approximated

through a likelihood function optimization. Based on the
equation above, the likelihood function of a dam set of
size D is:

D e (ce+cl*x i_.._+c.a ,x_ }oyi

L = H 1 + e (c°+C'°x"*'+_*xk)'¥_
i=l

The coefficients that will maximize the likelihood
function will be the regression coefficient estimates.
However, this expression is not maximizable through
analytical methods and therefore numerical algorithms
(e.g. Newton-Raphson) are used to maximize L. A
heuristic stepwise process for explanatory variable
selection can be used to build the model.

2.3 Optimized Set Reduction

The second approach, Optimized Set Reduction (OSR),
is described in [BBT92, BBH92]. It is a modefing
approachwhichisbasedon bothstatisticaland machine
learningprinciples['BSOF84].Given an historicaldata

set,OSR automaticallygenerates(througha search
algorithm)acollectiouoflogicalexpressionsrefern_to
aspatternswhichcharaccerizathetrendsobservablein
thedataset.As an exampleofa pattern,considerthe
following:

(Predicatek OR Predicatel) AND Predicatem =>
Risk_class i.

where predicates have the form (EVi e EVclassij),
meaning that a particular explanatory variable EVi

belongs to part of its value domain, Le. EVclassij.

Two main problems were met while using this
approach:

(1) Several of the design metrics are ratios and many
instances show zero denominators and therefore
undefined values. Logisticregressioncannot gracefully
handle "undefined" cases. For instance, in this case,
using "dummy" variables would increase the nmnber
of explanatory variables by nearly fifty percent.
Therefore, in order to address the problem, we replaced
the undefined values with zeros and calculated the

coefficients from this modified data seL In this way,
we insure that undefined instances will not affect the
calculation of the likelihood function.

(2) Two of the dependent variables are defined on
nominal scales. The only solution to deal with such
variable istouse"dummy" variables [DG84].Inthis
case,thetwo nominalvariablesforceus togenerate
eightdummy variablestobe consideredduringthe

stepwisevariableselectionprocess.For a larger
numberofsymbolic/nominalvariables,thisissuemay
become a serioushandicapforusingthe logistic
regressionapproach.

Before starting the stepwise logistic regression process,
it is possible to reduce the dimensionality of the sample
space (i.e. 68 explanatory variables in our case) by
performing a principal component analysis _] on
the available design and size metrics. Thus, we hope to
be able to extract a smaller number of variables
captm-ing most of the variation observed in the sample
space. As shown by []3(384, MK92], this may increase
the stability of the stepwise variable selection process
and therefore improve the predictive result of the
regression model.

The expression on the left hand side of "=>"characterizes
a set of components from the historical data seL For
example, if a given component is such that it makes the
left hand side of the above logical expression true, it
implies that it is likely to be in the Risk_classi. For
eachpatterngeneratedby OSR, a reliabilityofprediction
(i.e.estimatedprobabilityof performingthe right
classification)and a itsstatisticalsignificance(how
likelyisthisprobabilitydue tochance?)arecalculated

basedon thelearningset.When usingOSR, acollection
of relevantpatternsassociatedwitha componentare
identifiedbasedon thelearningset(i.e.the dataset

minus thecomponcnO.As a resultofthisprocess,itis
possiblethatseveralpatternscharacterizingthesame
componentcouldyieldcontradictoryclassifications.In
thiscase,theconflictissolvedby firsteliminating
patternsthatdo notshow a significantreliability.Then,
if the renaming patterns are still in conflict, the patmrn
that shows the highest reliability is used for the
classification.

Patterns provide interpretable models where the impact
of each predicate can be easily evaluated. When
interpreting patterns, they should be read as regular
logical expressions with one main exception: the order
of the termson each side of the"AND" operator is
meaningful.A predicateon aright-handsideofanAND

operator is _tatistically significant (i.e. has a significant
impact on the risk class probabilities) only if the
predicates on the loft-hand side are woe. In our example,
(Predicate k OR Predicate l) is significant independent of
any context while Predicate m is only significant in the
context where (Predicate k OR Predicate 1) is already
true. Su'ongassociations(asdcfmedbytheuser)between
predicates are visible through OR connections.

The OSR pgcx:esswill generate a set of patterns specific
of the data set provided. However, interdependencies

10014023L 2-37

between explanatory variables may cause OSR to
produce numerous similar patterns which capture
essentially the same phenomena. This presents two
problems (1) it can make pattern interpretation more
confusing, since it masks predicate associations in
various contexts, and (2) it hides the significance of
phenomena which are represented by several similar
patterns whose statistical significance appears weak
independently, but is quite significant when grouped
together. In order to address these issues, algorithms,
supported by tools, have been designed to merge
"similar" patterns according to a user defined,
statistically based, degree of similarity [BBH92]. These
algorithms have been used in order to obtain the patterns
presented in the next sections.

It should be noted that in the design of OSR, we have
alleviated some of the problems encountered in the
logistic regression model. The "division by zero" cases
can be handled as well as any other cases since it is
simply defined as just another class of the variable's
domain. Also, nominal and continuous explanatory
variables are selected and included in the model in a
consistent manner, since both are considered as
predicates. One possible limitation of OSR is that it
requites continuous explanatory variable ranges to be
divided in intervals. However, this is done automatically
by clustering algorithms which calculate optimal
boundaries.

2.4 Evaluation of Models

Accuracy of models is compared from two different
perspectives: their completeness and their correctness in
identifying high risk components. Completeness is the
percentage of components that have generated difficult
errors that have been actually recognized as such by the
model. It tells us how effective the model is in
determining the high risk components, and thus can be
used to determine the benefit of applying remedial
actions to these components. Correctness is the
percentage of con'ect classifications when a component is
classified in the high risk class. It tells us the cost of
achieving that level of effectiveness in the model. Both
measures are necessary to perform a cost/benefit analysis
on remedial actions taken on the components identified
as high risk. For instance, given a particular
completeness, ff correctness is low, the remedial action
will be taken on many components Which are actually
not high risk, creating waste of resources and therefore
increasing the cost of the action. On the other hand, if
correctness is high, waste of resources will be
minimized.

Interpretability of a model will be defined as "the
capability, based on the model, to quantify in rations
contexts the association (interpretable as a cause-effect

relationship) of explanatory variables with the defined
notion of risk". This will be assessed for each modeling
technique by evaluating their capability to provide such
quantification.

3. Metrics Used in the Study

The metricsused in thestudywere obtainedfrom a

projectwhosegoalsweretobuildmultivariatemodelsof
software quality based on architectural characteristics of
Ada designs [AESgO].Thisproject explores the view
that characteristics of the software architecture can be

extracted from Ada designs usingstatic analysis,and can
be used to Im_dictvarious quality factors in the defivered
product[AE92,AE+92,EA92].

3.1 An Architectural View of the System

The increased use of Ada as a design as well as an
implementation language offers the opportunity to better
assess the product in its intermediate stages. Since the
design and the final product ate written in the same
language,Ada, we can use tools developed for analysis
of Ada source code to provide an automated means for
analyzing Ada designs. This automation is essential ff
one is to frequently measure and assess the design.

The architectural view of the Ada system can be derived
by identifying the major components of the system, and
detezminmgthe relationships among them. The library
unit aggregation (LUA), or the library unit and all its
descendant secondary units [AESg0], has been noted as
providing an interesting view of an Ada system.
Example relationships between LUAs are the
importer/exporter relationship and the relationship
between an instantiation and its generic template.
Characteristics of the LUAs and the relationships
between LUAs were used to develop multivariate
statistical models of quality factors such as defect
density, error correction effort, and change
implementation effort [AE92, AE+92, EA92]. The
characteristics that were included in this study are
deson-bedbelow.

3.2 Description of Design Characteristics

The metrics used in this study are derived from the
architecture of the system, and were obtained by an
automated static analysis of the source code usingthe
ASAP static analysis program [Dou87], UNIX utilities,
and the SAS statistical analysis system. They were
generatedaspartof a research project performed at the
MITRE Corporation whose goal was to develop models
to predict various product qualities throughout the
development process [AES90,AE92]. At the heart of the
measures are counts of declarations in an LUA - whether
they are declarations made in the LUA, declarations

I0014023L 2-38

imported to the LUA (i.e. those declared in another LUA
made visible by a "with" clause), declarations exported
by the LUA (i.e. declarations made in the LUA, and
visible to other units that import the LUA), and
declarations hidden from these importing units (i.e.
declarations made in the associated body and subunits). A
collection of metrics were developed from hypotheses
about the nature of the software design process. These,
in addition to other raw measures extracted from the
source code were used in this study. The metrics include
indications of design characteristics such as the extent of
imports, context coupling, visibility control, locality of
imports, and parameterizafion. These charaoeristics are
explained below.

• imports: the number of declarations imported (via a
"with" clause) to a LUA. This measure is an
indication of the amount of services used by a
particularunit. A unit that does not import must
develop hidden units to allow for the provision of
services listed in its specification. On the other
hand, a unit that imports too extensively may not
be cohesive as possible. At times, either extreme
may be a problem area.

• Context Coupling Ratio: the ratio of declarations
imported by a LUA divided by the declarations
exported by the LUA. This measure is an indication
of the amount of services used by a particular unit
relative to what services it provides. As with
imports, either extreme may be a problem area.

• Locality of Imports: the percentage of im_
declarations that originate from the same subsystem
as the LUA of interest. It is believed that a
developer is more familiar with LUAs of the same
subsystem as the LUA that he is developing. When
the LUA imports primarily from these "local"
LUAs, there may be a reduced chance of a
misunderstandingabout the imports.

[AES90]. Wlieii this ratio is equal to one, it
indicates thatdeclarations are being imported direoly
to each compilation unit that uses them. As the
ratio increases, it indicates the extent of indirect

import visibility, relative to direct import visibility,
which can be taken as a proxy for whether the
imports are occurring only at the level in which
they are need_

3.3 Measurement of Design Characteristics

The abovedesigncharacteri_cshaveonlybeendescribed
in a generalmanner. Differentways of counting
declarationswillresultinacollectionof similar metrics.

Forexample,theratioof importsoverexportscan be
definedin termsof totaldeclarations(i.e.the total

number of importeddeclarationsdividedby thetotal
number of exporteddeclarations),or in terms of

subprogramdeclarations(i.e.thenumber of imported
subprogramsdividedby the number of exported
subprograms). While these are two different measures,
there is a sigt_tcant degree of similarity. However, one
major difference is that the count of all subprogram
declarations should be available at an earfier phaseof the
design than the COUntoftotaldeclarations. Thus a model
using metrics based on subprogram declarations can be
can be applied at an earlier stage in the design than one
using metrics based on totaldeclarations. The metrics
used me distinguished by differentiating between various
types of declarations, (i.e. packages, subprograms, tasks,
types, subtypes, objects, formal parameters, constants,
and exceptions), and by whether they differentiate
overloaded names. Counts of declarations made in each
LUA, as well as the metrics described in 3.2, were also
used in the analysis.

4 Classification Accuracy of the
Generated Models

• Paramemrizafion: This characteristic relates to how
wellthe LUA is parameterized. The metric used is
the average number of parameters per program unit
declaration in the LUA. Too many parameters may
be an indication that the unit is not cohesive, and
thus could be more difficult to understand, while too
few may result in an inflexible structure, and thus
make adaptation and modification more difficult.
Either extreme may adversely affect quality.

Visibility Control: This design characteristic
attempts to capture the extent to which declarations
are imported to where they axe needed, as suggested
in [GKB86]. The metric used is a ratio of "cascaded
imports" (or declarations directly imported to a
higher level unit in the LUA, and whose visibility
"cascades"tothe descendentunits),to dh-ect imports

4.1 Classification Rules

As said in section 2.3, during the OSR process, several
patternsare generated for each LUA to be predicted. For
each of these patterns, a specific classification is
calculated based upon the pattern vector subset that it
characterizes and its correspondingdistribution across
risk classes. Those classificationsareusedinorderto
determine the final classification of the LUA.
Unfortunately, the patterns may yield different
classifications. In this case, the first criterion used for
classifying the LUA is the pattern reliabilities. The
pattern with the maximum reliability is selected for
classification. When several patterns show an identical
reliability, then the statistical significance of this
reliability- (i.e. probability that this reliability is
obtained by chance) is compared. The pattern with the

10014023L 2-39

best level of significance is selected. With respect to
logistic regression, the calculated risk class probabilities
(see section 2.2) are used. A decision boundary of 0.5
was used since the Original data set contained the same
number of data points within each risk class, i.e. the a
priori class probabitities are 0.5.

either technique to allow, for example, a higher
completeness (at the expense of correcmess); however, in
this example, the logistic regression technique can not
achieve a level of completeness comparable to OSR
without sacrificing correctness.

4.2 Predictive Accuracy

Tables I and 2 compares the modeling techniques, for
both high isolation cost and high completion cost,
respectively, the average correctness (i.e. the percentage
of correct classifications in both high and low risk
classes), the correctness of the model when looking at
the high risk class only, and the completeness of the
model with respect to the high risk class LUAs.

Completeness

ill

High Class
Correctness

Average
_Conecmess

,,m,,,,

Logistic
Regression

62%

i

83%

75%

OSR

84%

83%

82%

Table 1: High Isolation Cost Model
Accuracies

Completeness

High Class
Correctness

,q

Average
C_

Logistic
Re_,ression

66%

82%

76%

OSR

94%

81%

87%

Table 2: High Completion Cost Model
Accuracies

The logistic regression results presented in the tables
were obtained without using principal component
analysis. Unexpectedly, the results were poorer when the
principal components were used in the logistic
regression equation, so we therefore decided to use the
results obtained without the principal components.

In both result tables, the same phenomenon may be
observed: logistic regression and OSR had similar results
in terms of high class correctuess, but OSR performed
much better in terms of average correctness and
completeness. The decision rules can be adjusted for

5 Lessons Learned Through Model

Interpretation

In this section we will discuss the interpretability of
logistic regression equations. Then we will interpret the
generated OSR patterns in order to assess how they
support our hypotheses about software reliability and
modifiability. Through examples, we will demonstrate
how OSR can be a useful tool in order to perform
exploratory dataanalysis.

5.1 Interpretation of Logistic
Regression Equations

As an experiment to assess the stability and therefore the
meaning and interpretabifity of the calculated regression
coefficient estimates, we recalculated the model several
times the model calculated for completion efforL Each of
the model's explanatory variables was successively
removed from the equation and the model was
recalculated. Table 5.3 show the variations of coefficient
estimates. Each column is labelled with the removed
explanatory variable. At a first glance, many explanatory
variables become non-significant at the 0.05 level
(flagged with % Also parameters like LUU'IOBJ,
LUISUBP, LUEXC have a large variation in their
associated coefficiems, although they remain significanL
Some of these phenomena are easily explained by
looking at the correlation matrix of those variables.
Strong direct correlations can be observed among several
pairs of variables: R(LUUIOBJ, LUIOB/)=G.816,
R(LUISUBP,LUIOBJ)=0.543, R(LUISUBP,
LUEXC)=0.447. However, these correlations cannot
explain most the variation observable in Table 5.3, e.g.,
when LUIOBJ is removed, LUFNEMS becomes non-

significant.

This instability may be explained by the unavoidable
violation in many real world data sets of many of the
important assumptions underlying regression analysis.
Homoscedasticity is assumed but not guaranteed:
although explanatory variables may be good predictors
on a part of their ral)ge and non-significant elsewhere,
regression asstnnes a predictor to be globally significant
or not sigzlJficanL Also, the significance of explanatory
variables as predictors is strongly dependent of the
context which is defined by the acutal value of the other
explanatory variables, e.g. the ratio of cascaded imports
may be significant uniquely in the context where the
number of imported parameters and subprograms is
large. The straightforward question which can be asked

10014023L 2-40

Table 3: Instability of Regression Coefficient Estimates

when looking at the latter results is: are these
coefficients interpretable (i.e. can we determine which

ones have the strongest impact on the risk of having an
error difficult to complete)? The answer is that only the
coefficients that remained reasonably stable can be

interpreted with a reasonable certainty. With respect to
the other coefficients, it may be concluded that they have
some difficult to quantify influence in some
tmdctemd_! comexL

5.2 Interpretation of OSR Patterns

In this section, we discuss the patterns generated by
OSR. Then, we compare the interpretability of the
respective patterns and regression equations. Some of the
statistically significant, reliable patterns indicating high
risk generated by the OSR process are presented and
discussed. There are two groups of patterns, those related

to isolation cost and those related to completion cost.
The format in which the patterns are presented is
described below. Assume we want to represent the
following patterns:

(I)(PredicatekOR Predicatel)AND Predicatem

(2)(PredicatekOR PredicatedAND Prcdica_n.

In thiscase, the patternsand associatedinformation

would be provided in the following format where
Predicatemand Predicatenaredefinedinthecontextof

Pt_catek OR Pmdica_l:

Predicatek OR Predicatei

Statisticsld

Predicatem:

StatistiCSm

Predicatem
Statisticsn

where Statistics is a set of the following fields:

• Variationin Entropy (AID of the pattern: this
represents the impact of a predicate in a
determined contexL

• Probability of being in the high risk class (PH)
• Number of Pattern Vectors (#PV) in the learning

set matching the predicate in its context.

Predicates are of the form EV x ¢ SETxy, where EV x is

an explanatory variable, and SETxy a subset of the value
domain ofEVx.

5.2.1 Isolation Patterns

For the risk of having an error chat is difficult to isolate,
five major influences were found. These are: the number
of imported declarations to the library unit aggregation
(LUA), the size of the LUA, the degree of visibility
control in the LUA, the locality of imports to the LUA,
the extent of controlflow in the LUA, and the number

of user declared exceptions in the LUA. These
influences ate described in the followingparagraphs, and
will be discussed in the context in which they were
determined to be significanL For each of these influential
factors, examples of patterns associated with the factors
me presented.

(I) number of imports:

LUISUBP ¢ [69%,100%] OR LUIPAR • [75%,100%]
AH = 0.32, PH=0.82,#PV=39

LUIUDEC (E [72%,100%]OR LUITOT • [72%,100%]
AH = 0.36,PH---0.84,#PV=37

LUCALLS • [66%, 100%]
All = 0.30, PH=0.81,#PV=42

LUISUBP • [35%, 100%]
AH = 0.62, PH=0.926,#PV=27

A large number of imports to the LUA appears to be a
significant indicator that the LUA may have a difficult to
isolate en'or. There may be several reasons for this, since
a large number of direct imports is often the result of

10014023L 2-41

two influences: a Largenumber of imported services, aM
a large number of compilation units that import the
same service. On the other hand, a low number of

imports appears to reduce the risk of having an error
difficult to isolate. When there is little interaction with
other library units, it may be easier for the programmer
to isolate the origin of the error and to understand its
consequences on the system functionalities. This
phenomenon appears to be very influential according to
the generated patterns since the corresponding predicates
ovate in average the largest total variation of reliability.
As indicated by the above patterns, this indication may
be obtained early in development, e.g. by examining the
number of imported subprograms (LUISUBP) or
parameters (LUIPAR), or late, e.g. by examining the
total number of imported declarations, LUITOT, or
unique declarations (LUIUDEC, a similar count of
imported declarations, but with overloaded declarations
only counted once).

(2) Size of h'btary unit aggregation:

declarations are being imported into top level units in
the library unit aggregation (e.g the LUA itsel/), and not
into the low level units, where it is likely that the
imported services are to be used. In this situation, to
understand the interface of any single compilation unit,
one must examine the interface of its ancestor units
(from where the declarations were cascaded). This may
result in additional error isolation effort.

(4) Control Flow:

LUAVECF_ [63%, 100%]
AH = 0.17, PH=0.74,#PV---46

LUCALLS• [66%, 100%]
AH = 0.30, PH=0.81,#FV---42

LUIEPUD e [63%. 100%]

AM-- 0.14, PH--O.86,#PV---46
LUCALLS¢ [45%,100%]
AH = 0.37, PH=0.91,#PV=I 1

LUSLOC • [53%, 100%]
AH = 0.18, PH--0.74,#PV=58

LUOBJ • [71%,100%] OR LUSLOC e [71%,100%]

OR LUADA ¢ [70%,100%]
AM = 0.24, PH--0.78,#PV--41

LUCALLS• [66%,100%]
AH = 0.30, PH--0.81,#PV--42
LUOBJ• [47%, 100%]
AH = 0.73, PH--0.95,#PV=22

The size of the LUA in question appears to be a
significant indicator of the presence of a difficult to
isolate error. When the LUA has a very small size, i.e.
first quartile, errors are not as likely to appear, aM when
they do appear, they are not likely to be difficult to
understand and isolate. On the other hand, the larger
LUAs are much more likely to contain a difficult to
isolate error. More information has to be analyzed in
order to understand the structure aM content of the LUA,

adding to isolation effort. Several metrics are seen as
such an indicator of a high risk component - from counts
of object declarations (LUOBJ) to counts of statements
(LUADA) and source lines of code (LUSLOC) in the
component.

(3) Visibility Control:

LUVCPUD_ [70%, 100%]

AH = 0.18, PH--0.74,#PV=35

The ratio of cascaded imports to direct imports [AES90]
Ixovides a crude measure as to whethex declarations are
being imlxaled directly to where they are needed. A large
ratio of cascaded imports to direct imports indicates that

10014023L

Components with an excessive number of call branches
are likely to be more difficult to understand and isolate
an error, because of the additional paths that must be
explored. LUAVECF, or the average number of call
statements per subprogram in the LUA, was found to be
an indicator of high isolation difficulty when it was in
the uppermost quartile, supporting the hypothesis.
LUCALLS, the count of call statements in the
aggregation, is related to both control flow and size of
the LUA. When this is large, there is a high probability
that there will be a difficult to isolate error, supporting
the hypotheses about size aM control flow. Also, we see
that LUCALLS provides an even stronger prediction
when in the context of a large context coupling ratio
(LUIEPUD), as is evidenced by the increased probability
of being in the high risk class.

(5) Context Couplingratio:

LUIEPUD• [63%,100%]
AH = 0.14,PH=O.72,#PV--46

LUIEUDEC•[42%,100%]OR LUIETOT_[42%,100%]
AM = 0.07,PH=O.66,#PV=73

One measure of design complexity suggested in [AE92]
is context coupling, which measures the interconnection
of compilation units. The ratio of imported to e_
declarations was suggested as useful indicator of this
typeof complexity, as itaccountsfor the nmnberof
declarations made visible by context coupling,
normalized by the number of exports in the library unit.
We see that as this ratio increases, the likelihood of a
difficult to isolate earoralso incaeases. Again, we see
this influence both with measures available early (with
the ratio measured by program unit declarations,

2-42

LUIEPUD), and late, mea.mred by total declarations and
unique declarations (LUIZrOT and LUIEUDE_.

(6) Number of exceptions:

LUEXC e [76%, 100%]
AH = 0.28, PH=0.80,#PV=30

One interesting frequently occuring pattern indicating a
high risk component included the number of user

declared exceptions (LUEXC) being in the uppermost
quartile.Exceptionhandling isa_ oftenoverlookedand

misunderstoodfeatureofthe Ada language;thispattern
indicatesthattheremay have been difficultywith itin

this environment. Further investigationwould be

necessary to confmn this,but, in any event,itdoes

serveasa usefulindicatorofa high riskcomponent.

(7)Localityof imports:

LUIOUDEC e [84%, 100%]
AH = 0.26, PH=0.21,#PV=I9

LUINST • [76%,100%]

AH = 0.22,PH=0.77,#PV=35

LUVCUDEC ¢ [45% ,I00%]

OR LUVC'I_T • [45% ,100%]
All = 0.70,PH=0.95,#PV=I9

A large ratio of cascaded imports to direct imports raises
the risk of having an associated difficult to complete
error. This was typically found to be significant in the
context of a large LUA or a LUA that contains a large
number of imports (cascaded or direct). If declarations are

not imported directly to where they are needed, it may
result in additional effort tounderstand the unit, which
may result in additional error correction effort.

(2)Number of imports:

LUIUDEC • [77%,100%]
AH = 0.09,PH=0.67,#PV=49

LUCUDEC • [48% ,I00%]

AH = 0.37,PH=0.g4,#PV=25

We expected that having most imports originate locally
would reduce the likelihood of such a high risk error, as
the designer(s)/programmer(s) may have a greater
familiarity with artifacts of his own subsystem than
with those of other subsystems. LUIOUDEC is a
measure of the fraction of imported uniquedeclarations
that are declared in the same subsystem as the LUA in
question. We see that when it is extreme, i.e. most to all
imports come from "local" units, there is a low
probability (0.21) of being in the high risk class.

5.2.2 Completion Patterns

Here again, several phenomena related to the

assumptions made in section 3 may be observed from
these patterns:

(I)Visibility Control:

LUVCPUD • [58%, 100%]
AH = 0.13, PH=0.71,#PV=62

LUSLOC • [68%,100%]
AH = 0.I0,PH=0.68,#PV---.47

LUVCTOT • [25%,100%]
AH = 0.34,PH----0.83,#PV=35

LIRJrroT • [69%,100%]
All= 0.II,PH=0.69,#PV--46

LUVCTOT • [36% ,100%]

OR LUVCUDECe [43% ,100%]

AH = 0.42,PH---0.86,#PV=29

LUCUDEC •[60%,100%]OR LUCTOT • [58%,I00%]
AH = 0.09,PH=0.68,#PV=62

A large number of imports (i.e. subprograms, types,
subtypes, formal parameters) to a library unit
aggregation appears to increase the risk of having an
error difficult to complete a change. This appears
whether the imports are counted in terms of direct

importsor cascaded imports. As explainedpreviously,

while this may be a due to a libraryunitaggregation
requiringthe services of an excessivenumber of other

LUAs, itmay alsobe an indicatorof the sizeof the

aggregationitself;sincemultiplecompilationunitsin

the largerLUAs oftenimportthe servicesof the same

LUA, thereby increasingthe measures found in the
above predicates.When thereislessinteractionwith

otherLUAs, itmay be easierto implement the change

and evaluate its consequences on the system

functionalities.As with the effortto isolatea change,

this phenomenon appears to be very frequent and

influential. The influence can be seen as measured by
direct (L_) and cascaded (LUCTOT, LUCUDEC)
impo_.

(4) Size of LUAs:

LUPUDS • [65%,100%]OR LUSUBP • [65%,100%]

All= 0.09,PH=0.67,#PV=52

LUOBJ • [52%, 100%]
All = 0.05, PH=O.63,#PV=72

If the LUA_has a very large size, then errors are more

likely to appear and changes are more likely to be
difficult to complete. It is expected to see large LUAs to

10014023L 2-43

be likely to require additional effort to understand,
correct, and verify. Here, we see patterns that indicate
that LUAs containing many program unit declarations
(LUPUD), subprogram declarations (LUSUBP), and
object declarations (LUOBJ) are more likely to be in the
high cost class.
(5) Number of exceptions:

LUEXC • [73%, 100%]

All = 0.19, PH--0.75,#PV--40

As with the isolation cost models, when there are many
exceptions declared there is an increased probability of a
difficult to complete error. These patterns may be
indicative of problems in controlling exception handling.

(6) Count of Instantiations:

LUINST 6 [76%, 100%]

AH = 0.22, PH=0.77.#PV=35

LUCUDEC • [60%,100%] OR LUCTOT • [58%,100%]
AH = 0.09, PH--0.68,#PV=62

LUINSTe [56% ,100%]

AH = 0.50, PH--0.89,#PV=27

LUAs with a relatively large number of instantianted
generics (LUINST) were found to be likely to have a
difficult to complete error. This is even more significant
in the context of a large number of cascaded imports. As
with the previously noted difficulty with exceptions, this
may be an indicator of difficulty with the Ada generic
features. Again, further investigation would be necessary
determine this.

(7) Parameterizatiou:

LUAVECF • [0%,57%] OR LUCALLS • [0%, 56%]

AH = 0.04, PH=O.38,#PV=92

LUPARM• [66%,100%] OR LUPARPV • [72%,

100%] OR LUPARPD • [72%, 100%]
AH = 0.30, PH--0.19,#PV=32

This pattern focuses on the parameterization of the
imported units. When we have a weU parameterize,d uaxit,
i.e. a large number declared parameters (LUPARM), or a
high ratio of parameters per program unit declaration
(LUPARPD), or visible parameters per vis_lc program
unit declaration (LUPARPV), we see a low probability
(0.19) of a difficult to complete error.

5.2.3 Discussion of Pattern Interpretability

As we have seen in the above examples, in contrast to
the regression equations, patterns are more suitable for
interpretationforthefollowingreasons:

(1) They explici0y describe the context in which
predicates appear to be significant predictors.

(2) The impact of a predicate is only dependent on the
defined context as opposed to regression parameters
that may be sensitive to many parameters in the
regression model. This indicates that the patterns will
be stable, which our generated regression models were
not.

(3) They show explicitly the associations in various
contexts between exploratory variables.

(4) They explicitly define the range on which a
variable appears to be an accurate predictor.

6 Conclusions

We can draw tlaee major conclusions from these
experimental results:

(1) With respect to Ada systems, it seems possible to
build accurate risk models during the design phase to
help designer prevent difficulties and testers manage
their resources. In othe_rwords, we have shown that it
may be possible to construct models which facilitate
cost benefit analysis using model correctness and
completeness. The analysis may be used to make
decisions concerning remedial actions during
developmenL

(2) The Optimized Set Reduction approach seems to
be a good alternative for multivariate empirical
modelinginthis application domain since the pallern-
basedclassificationappearmore accuratethanthose
from logistic regression equations. This also coufitms
previous studies showing similar results for other
kinds of applications [BBT92, BBH92].

(3) Patterns appear to be more stable and more
interpretable structures than regression equations when
the theoretical underlyingassumptionsatenot met.
This is a very important point in the context of the
improvement paradigm [BR88]. Feedback and the_fore
process improvement is only poss_le if the generated
quantitative models are interpretable. Taking effective
corrective actions is only possible when the impact of
controllable factors on the parameters to be controlled
(e.g. cost or quality) can be fully understood and
quantified.

The primary limitations of the OSR approach are the
following:

(1) OSR being a search algorithm, computation is
more intensive than for an analytical model.

10014023L 2-44

(2) OSR may be comparatively less accurate when the
assumptions underlying the logistic regression

analysis are met.

7 Acknowledgments

We would like to thank Victor Basili for his comments

on this paper. Also, we would like to thank William
Agresti, Frank McCcan'y and Jon Valett for their support

in providing the data used in this analysis.

8 References

[Agr90] A. Agresti, Categorical Data Analysis, John Wiley
& Sons, 1990.

[AES90] W. Agresti, W. Evanco, and M. Smith, "Early
Experiences Building a Software Quality Prediction Model',
Proceedings of the Fifteenth Annual Software Engineering
Workshop, November, 1990.

[AE92] W. Agresti and W. Evanco, "Projecting Software
Defects from, Analyzing Ada Designs', IEEE Trans.
Software Eng., 18 (11), November, 1992.

[AE+92] W. Agresti, W. Evanco, D. Murphy, W. Thomas,
and B. Ulery, "Statistical Models for Ada Design Quality',
Proceedings of the Fourth Software Quality Workshop,
Alexandria Bay, New York, August, 1992.

[Bas85] V. Basili, "Quantitative Evaluation of Software
Methodology', Proceedings of the First Pan Pacific
Computer Conference, Australia, July 1985.

[BR88] V. Basili and H. Rombach,'The TAME Project:
Towards Improvement-Oriented Software Environments',
IEEE Trans. Software Eng., 14 (6), June, 1988.

['BF+84] L. Breiman, J. Friedman, R. Oishen and C. Stone,
Classification and Regression Trees, Wadsworth &
Brooks/Cole, Monterey, California, 1984.

[BP92] L. Briand and A. Porter, "An Alternative Modeling
Approach for Predicting Error Profiles in Ada Systems',
EUROMETRICS '92, European Conference on Quantitative
Evaluation of Software and Systems, Brussels, Belgium,

April 1992.

[BBH92] L. Briand, V. Basili and C. Hetmanski, "Providing
an Empirical Basis for Optimizing the Verification and
Testing Phases of Software Development', IEEE
International Symposium on Software Reliability
Engineering, North Carolina, October 1992.

[BBT92] L. Briand, V. Basili and W. Thomas, "A Pattern
Recognition Approach for Software Enginnering Data
Analysis', IEEE Trans. Software Eng., 18 OIL November,
1992.

[CA88] D. Card and W- Agresti, "Measuring Software
Design Complexity', Journal of Systems and Software, 8
(3), March, 1988.

[13(384] W. Dillon and M. Goldstein, Multivariate Analysis:
Methods and Applications, Wiley and Sons, 1984.

[Dou87] D. Doubleday, "ASAP: An Ada Static Source Code
Analyzer Program', TR-1895, Department of Computer
Science, University of Maryland, August, 1987.

[EA92] W. Evanco and W. Agresti, "Statistical
Representations and Analyses of Software', Proceedings of
the 24th Symposium on the Interface of Computing Science
and Statistics', College Station, Texas, March, 1992.

[GKB86] J. Gannon, E. Katz, and V. Basili, "Metrics for Ada
Packages: An Initial Study', Communications of the ACM,
29 (7), July, 1986.

[HKgl] S. Henry and D. Kafura, "software Slruclaa'e Meu'ics
Based on Information Flow', IEEE Trans. Software Eng., 7

(5), September, 1981.

[MK92] J. Munson and T. Khoshgoftaar, "The Detection of
Fault-Prone Programs', IEEE Trans. Software Eng., 18 (5),
May, 1992.

[PA+82] H. Potier, J. Albin, R. Ferreol and A. Bilodeau,
"Experiments with Computer Software Complexity and
Reliability', Proceedings of the Sixth International
Conference on Software Engineering , September, 1982.

[Qui86] J. Quinlan, "Induction of Decision Trees', Machine
Learning 1, Number 1, 1986.

[Rom87] H. D. Rombach, "A Controlled Experiment on the
Impact of Software Structure on Maintainability', IEEE
Trans. Software Eng., 13 (3), March, 1987.

[SP88] R. Selby and A. Porter, "Learning from Examples:
Generation and Evaluation of Decision Trees for Software
Resource Analysis', IEEE Trans. Software Eng., 14 (12),
December, 1988.

10014023L 2-45

N94- 35437 /

?
An Information Model for Use in

Software Management Estimation and Prediction

?

Ningda R. Li and Marvin V. Zelkowitz

Department of Computer Science

University of Maryland

College Park, MD 20742

Abstract

This paper describes the use of cluster analysis

for determining the information model within col-

lected software engineering development data at the

NASA/GSFC Software Engineering Laboratory. We

describe the Software Management Environment tool

that allows managers to predict development at-

tributes &,ring early phases of a software project and

the modifications we propose to allow it to develop dy-
mmlic mod(,l_ for Iwtlor prediction of these attributes.

Keywords: Cluster analysis; Data modeling; Mea-
surenlem; Software management; Tools

1 Introduction

Software management depends upon managers to

collect accurate data of the software development pro-

cess and on Ihe production of accurate models upon
which to use that (lata. Lines of code is still the most

widely used mea-sur¢_ for cost and error analysis, even
though it. is known to be inaccurate [8]. llowever, since

it is not known until the completion of a project, its
use as a predictive measure is not reliable. What are

needed are more accurate models of the software de-

velopment, process.

Current models are developed according to broad

categories, such as waterfall development, spiral model
development, cleanroom development, etc., with addi-

tional qualifiers giving a few attributes of the product

(e.g., real time, embedded application_ data base).

Second International Conference on

Information and Knowledge Management

Arlington, VA
November, 1993

Data is often collected and projects are compared to

historical baselines according to these general cate-

gories. For example, the COCOMO model [1] is based

upon a small set of predefined factors, and predictions
are made according to how a new project measures up
to these factors.

It is difficult, for software managers, however expe-

rienced they are, to evaluate the status or quality of a
software development project and make correct deci-

sions without ace,irate, reliable measurement models
and data. These data include metrics aimed at clari-

fying and quautiS'ing some quality of either a software

product., or the development process itself [13].

Since we do not have accurate models of the soft-

ware development process, perhaps, we can use the

data itself to develop dynamic models of software

development that reflect the changing nature of the

development process, lu this paper we study one

particular modeling technique, cluster analysis, as

a means for determining the underlying information

model present in the collected software engineering de-
velopment data.

The importance.of software management has led,
to the development of various software management

tools for aiding in this effort. These tools help soft-

ware managers get access to, visualize, and analyze

measurement data. The Software Management Envi-
ronment (SME) is one of those tools developed within

the NASA Goddard Space Flight Center Software En-

gineering Laboratory (SEL) [6], [12]. It is the purpose

of this paper to investigate the use of cluster analysis

within SME to enhance the ability of software man-

agers to predict and control the software development
process.

In Section 2 we describe the information model and

the measures used by SME. In Section 3 we describe

10014023L 2-47

PR_-_ P_OE BLANK NOT FIL_,iLflO

our use of cluster analysis to dynamically change our
information model, and in Section 4 we describe some

preliminary results of using our new model. We then

give our conclusions to this work.

2 Measurement in SME

For over 15 years the software engineering commu-

nity has been studying various models of the soft.-

ware development, process. Concepts like Halstead's

software science measures, Putnam's Rayleigh curve,

Boehm's COCOMO model, among many others, are

all attempts at providing a quantitative model un-

derlying the software development cycle. Unfortu-

nately, most of these models are very general, and

while broadly describing the software process, do not

have the granularity to make accurate predictions on

a single software project.

As a way to further these studies, the Software En-

gineering Laboratory was established to evaluate the
al_ow_ models and develop new models within a pro-

duction l_rogramnling environment.

2.1 NASA/GSFC SEL

Tile NASA Goddard Space Flight Center Software

Engineering Laboratory is a joint research projecl

of GSFC Flight Dynamics Division, Computer Sci-

ences Corporation and the University of Maryland.

Data from over 100 projects has been collected since
1976 and a data base of over 50 Mbytes of measure-

ment data has been developed. Initially supporting

100,000 line FORTRAN ground support software for

unmanned spacecraft written by 10 to 15 program-
mers over a 2 year period for an IBM mainframe, the

SEL data base now includes a wider variety of projects

consisting also of Ada and C code for a variety of ma-
chines.

The SEL collects data both manually and automat-

ically. Manual data includes effort data (e.g., time

spent by programmers on a variety of tasks - design,

coding, testing), error data (e.g., errors or changes,
and the effort to find, design and make those changes),

and subjective and objective facts about projects (e.g.,
start and end completion dates, goals and attributes

of project and whether they were met). Automatically
collected data includes computer use, program static

analysis, and source line and module counts.

2.2 Measure Models

Data modeling often combines various measures in
order to evaluate attributes in a software development.

For example, classification trees were used as part

of the Amadeus project [9][10] and a variant of that

method was used within the SEL [11]. In this case, a

tree is generated where each leaf node represents one
of several results. Based upon values for each mea-

sure, a path down the tree is taken until a result at a
leaf node is reached.

For each project, we can compare the collected data

over time with a predefined model of a similar project
from the data base. A basic measure model refers to

the expected behavior of a software development mea-

sure as a function of time [5]. Measures, developed
from the raw data collected by the SEL, include lines

of code, staff hours, computer hours, and changes and
errors. A measure model is usually obtained by exam-

ining the data for that measure over a set of projects

and averaging them. Time is described in terms of
the four major t)hases of software development within

lhe waterfall life-cycle: design, code and unit. test, sys-

I.em test, and acceptance test. _ Measure behavior is

described in terms of percent completion of that mea-

sure at each distinct checkpoint.

Within the SEL, we describe one of these measure
models as a vector of 15 points, each representing the

percent completion of the measure at distinct dates
in the development cycle (generally 25% increments

through each phase). Table 1 shows the tabular repre-
sentation of a Lines of Code (LOC) model [5] and Fig-

ure 1 shows the graphical representation of the same
model. According to the LOC model, no code should

be written during the design phase, and most of the

code (76%) should be written during the code and unit

test phase.

For ease of use, we can use the vector representation
of the model:

[0, 0, 0, 0, 0,6.86, 36.05, 53.99,76.28,
86.82, 94.88, 96.09, 98.14, 99.58,100]

In general, a measure model cah be represented by

the following vector:

P = [Po,Pl,P'-,... ,Pla, Pla]

1The SEL does not collect specification data since that task
is performed by another group. This is reflected in the models
that the SEL develops, and is a good indication why no two
development models are easily transportable across locations.

10014023L 2-48

Phase % of Phase % of Total Lines

Design

Code/Unit
Test

System Test

Acceptance
Test

End

0

25

50
75

0

25

50

75

O

50

0

25

50

75

1O0

0.00

0.00

0.00

0.00

0.00

6.86

36.05

53.99

76.28

86.82

94.88

96.09

98.14

99.58
100.00

Table 1: Tabular representation of a LOC model

120

100

8O

%
LOC 6O

4O

20

Design A_ept.
i es_

"_-_ 100

Code/ 's.
Unit Test _r'_st

[

1 1 a !
4 2 4 2

Phases

1 3 1 1 3 EndStart 4 2 4 4 2 4

Figure 2: LOC patterns

Design

100

80

% 60
LOC

40

2O

S, .-3--_ '
t.art ._ _

Code/ Sys. ALcept.
Unit Test, "lest 'lest

1 1 3

4 "2 .1

Phases

I l 3
,7 7 _ End

100

Figure 1: Graphical representation of a LOC model

with Po = O, 0 < Pi < 100 for I <_ i _< 13, and
Pa4 = 100.

We will use measure pattern to refer to a measure

model derived from a single project.. Essentially, we

produce a measure model as the average of some set
of measure patterns.

2.3 SME

The Software Management Environment was devel-

oped to help software managers carry out manage-

ment activities like observation, comparison, predic-

tion, analysis, and assessment [6]. In order to provide
these functions, SME uses measurement data from

current and past projects from the SEL database, re-

search results in terms of models and relationships,

and manager experience front the past,

SME was initially built, with a fixed set. of measure

models. For example, for LOC (lines of code), the

most apparent predictor seemed to he programming
language. Therefore, SME originally had two models

of LOC based upon language - Ada and FORTRAN.
Each project was classified according to the measure

model it was expected to adhere to, and for each mea-

sure type, a predefined measure model was stored in
the data base.

Some of the features of SME at',." described 1,clew.

Measure models in SME

Currently in SME, a measure model is derived from

a set of projects with the same characteristics, such
as development methodology, programming language,
and development environment. SME decides which

measure model to use for a project measure of inter-

est based on the characteristics of that project. For

example, Figure 2 shows four LOC patterns of four
different projects with the same characteristics. SME

creates a LOC model by averaging these patterns, but

is the resulting model a good representative of actual

LOC behavior? This is the basic question behind our

research plan, and our goal is to develop, dynami-

cally, LOC (and other) models that better represent
attribute behavior.

Observation and Comparison

To monitor the progress of a project, managers need

10014023L 2-49

Mgr'sI 1
Plan21

Sched.87
DESGN

300K

200K
LOC

100K

SME 1
Model21
Sched.87

10 10 03 09

cor_,T --',WBTNXgWTE1

88 89

i

I
059

90 90

Figure 3: Growth in 'Lines of Code' for P1

cunmlative growth data for measures such as effort,

size and errors. SME provides graphic display of the
actual collected data like shown in Figure 3, in which

_he solid curve represents an overall view of project

Pt's growth in size (lines of code) over a specified cal-
endar l.ime. Tile dotted curve in Figure 3 shows a

LOC model of a similar project or tile LOC measure
model f,'om tile data base to permit the manager to

compare project data to a model which indicates the

"normal behavior" for such projects. Comparison can

also be made belween projects.

Prediction

SM E can also predict a measure's completion value

for an on-going project, by using the appropriate mea-
sure model scaled up to the actual time schedule of the

new project. Using the initial data collected from a

project., final values can be estimated giving the man-

ager an indication of the measure's possible future be-
havior.

Analysis and Assessment

SME can help the manager identify the probable

causes of any unexpected behavior for a measure, and

assess the quality of a project based on all the mea-

surement data. For each measure, a knowledge base of

cause-effect relationships is maintained. So, for exam-

ple, if a given project seems to have too many errors
at a certain point in the coding phase compared to the
error measure model, a rationale can be provided to

the manager, such as:

TEAM IS REPORTING INCONSEQUENTAIL ERRORS

INEXPERIENCED DEVELOPMENT TEAM

POOR USE OF METHODOLOGY

CONPLEX PROBLEM

etc.

Similar idea can be found in [4]. What is desired

is a mechanism whereas this knowledge base can be

updated dynamically as project.s evolve.

3 Cluster analysis

Cluster analysis is the technique for finding groups

in data [7] that represent the same information model.
Biologists and social scientists have long used it to

analyze their data. Here, we use it to find similar

measure patterns within the collected software devel-

opment data.

Ch,stering was used previously in an early SEL

study [3] in order to determine possible patterns in
projects by clustering tim modules that make up the

project. The results were somewhat inconclusive due

to large variances within small modules and the many
different attributes that contributed to the single value

that was clustered. In this current study, we try to

separate out. different attributes and study their ef-

fects over time. This gives greater precision to the

data we are looking at and eliminates much of the
variability found in the earlier study.

3.1 Clustering

As stated in section 2.2, a measure pattern can be

represented by a vector. Clustering is a method to
determine which vectors are similar and represent the

same or similar physical objects. There are several

clustering and modeling algorithms, including:

• Euclidean distance. Each vector represents a

point in n-space. Points near one another are in
the same cluster.

• Cosine. Each measure pattern represents a vector

fi'om the origin. The cosine of the angle between

two vectors represents the similarly in their com-

ponents and hence their closeness.

. Optimal Set Reduction. OSR generates, based on

search algorithms and univariate statistics,.logical

expressions which represent strong patterns in a

data set [2].

-- 10014023L 2-50

100

8O

% 60
LOC

4O

20

Start

Code/ egt acceptDesign Unit Test 'lest

I 1 3
4 2 4

Phases

100

1 I 3 ! I 1 3 End4 2 4 2 4 2 4

Figure 4: A cluster of LOC patterns

Several other algorithms also have been used.

For our initial investigation, we are using the Eu-

clidean distance between two vectors as a degree
of similarity between two measure pattern_. For

example, if P = [Po,l)t,P2,...,Pla, P_4] and .V =

[no,nl,n2,...,nla, n14] are two measure patterns,
then their Euclidean distance is

ed(P, N) = _/(Po - ,,o) 2 +' + (P,4 - ",.,)"

Two patterns are assumed similar and are in tile same

cluster if and only if ed(P, N) < ¢.

Note that. by varying c we can adjust the size of

tile clusters by specifying how close two vectors]]]i]s _i

be in order to be in the same grouping. Since single
vector clusters provide no information, we want to ad-

just e so that we generally have clusters of at least 3

vectors without including vectors that represent fun-

damentally different curves. Figure 4 shows a cluster

of three LOC patterns.

3.2 Cluster model

A clusler model is the average of all measure pat.-
terns in one cluster. It closely describes the measure

behavior for all projects in tile cluster because mea-
sure patterns in the same cluster are sinfilar. Instead

of choosing a predefined measure model for a project

measure of interest using the project's characteristics

(as is currently the case with SME), a cluster model

can be dynamically selected for the project measure
depending on which cluster its pattern best. fits.

A fl]rther advantage from the current static ap-
proach of SME, is that alternative models can be de-

veloped for each measured attribute. Within SME,
the same measure model is used for all measured at-

tributes. For example, if the defining characteristic is

Ada for the LOC measure, it will be the Ada mea-

sure model for each other measure (e.g., error, effort).

With dynamic clustering, measure models can vary for
each distinct measure.

For an ongoing project, a manager's estimate of
schedule and measure completion values are used to

derive its measure patterns. Estimates are replaced

by real data once they become available. So a project

measure's closest cluster model may change as the
project develops.-In Section 4.3 we discuss how to use

this information to improve on the predictive capa-

bilities of SME. On the other hand, since a project's

development methodology or programming language

usually do not change during a project's developmeut

life-cycle, the static measure model chosen by the cur-
rent implementation of SME based on those charac-

teristics does not change.

Similarly, SME does an assessment of a project's
real data compared to tim measure model's est.imal.e

by use of a predefined set of attributes. But by look-

ing at the attributes that are common for all projects
within a given cluster, we may be able to determine

general characteristics for any new project that falls

within that cluster. This list of attributes will dy-

namically evolve over time instead of being a static

description of project behavior. For example, if all

projects within a given cluster were previously lale in
delivery, it may be useful to report this information

i.o the manager of a new project that falls wit, hi,a this
cluster,

This allows the knowledge base to grow and change

dynamically as projects develop. It. does not require

the predefinition of a few models - which may not even

accurately represent the actual development model,
only a manager's poor estimate of one.

4 Evaluation of Clustering

Before implementation of our clustering approach
within SME, we evaluated the effectiveness of clus-

tering with a subset of the SEL data base. Mea-

surement data from twenty-four projects in the data

base were clustered using eight different measures:

computer hours (CPU), total staff hours (EFF), lines

of code (LOC), modules changed (MCII), module

10014023L 2-51

100

80

go 60
LOC

40

20

i
Start 4

Design

P3 --

P13 --
P19 --

P6

P16
g2o

100

Code/ _eSt Accept.Unit Test Test

1 1 3 1 1 1 3

4 2 4 _ 4 2 4
Phases

1 3 End
2 4

Figure 5: Two clusters of MCH patterns

count (MOD), reported changes (RCH), reported er-

rors (RER), and computer jobs (RUN). We then stud-
ied common objective and subjective attributes of

projects in the same cluster.

For examph:, Figure 5 shows two clusters of MCII

(module changes) patterns. Cluster Ct consists of pat-
terns from projects Ps, P1a and P19, and cluster C2

consists of patterns from projects P6, P16, Paw We
observe that more than half of the module changes

were made during the code and unit test phase for

projects in Ca compared to about twenty precent for
projects in C1. Consequently, only twenty percent of

the module changes were made during the system test

phase for C2 compared to about fifty percent for C1.

4.1 Objective characteristics

Project characteristics of the two clusters are sum-
marled in Table 2 and 3 respectively. We observe that

if computer language is the basis for choosing a MCtt
measure model, as is the case with the current ver-

sion of SME, all six projects will use the same MCH

model since they all use FORTRAN. In this case, clus-

tering discovers the two vastly different behaviors of
MCtt measures which are undetectable with the static

approach.

In addition, some commonly used discriminators do

not appear to be significant with these clusters. Size is
often used to classify projects, yet cluster Ct contains

projects from 16K to 179K source lines. The projects

represent two very different hardware and software en-

vironments (IBM mainframe and DEC VAX VMS)
and each project in CI represents a different applica-

Attributes

Computer

P19

Reuse (%)

IBM
Pa Pl3

- IB_ -DE-C

FORT. FORT.

AGSS SIM.

10.1 30.7

I16 I19

178.6 36.6

FORT.Language

Application ORBIT
38.1

Time (wks)

Size (SLOC)

Table 2: Project characteristics for

109

15.5

cluster C1

Attributes P6 P16 Pa0

Computer IBM IBM IBM

Language FORT. FORT. FORT•

Application AGSS AGSS AGSS

P_euse (%) 19.5 1.9 10.0

Time (wks) 97 87 147
167.8 233.8 295.4Size (SLOC)

Table 3: Project characteristics for cluster C'a

tion area. (tlowever projects in C., are more homoge-

neous; they all represent relatively large 1681(to 296K

attitude ground support syste,,,s Imill as mai,fi'anw

IBM applications.)

4.2 Subjective characteristics

Subjective data for each project is stored in the

data base as an integer between 1 (low or poor) and

5 (high). Each project manager fills in lhese values

at. the end of a project based upon experiences during

the development. For each cluster we retrieved those

subjective attributes that differed Iw a¢ most 1 within

the cluster, thus indicating a common feature fo," those

clustered projects. This i,,formation can then be fed
back to the manager of a new project thai falls within

that cluster to provide an indicalion of probable future
behavior.

Projects in cluster Ca have common ratings on the

following subjective attributes:

Tightness of schedule constraints: 3

Access to development system: 3

Timely software delivery: 4

We notice that their rating for timeliness of software

delivery is relatively high. This could be a direct re-
sult of the fact that most module changes were made

during code and unit test phase.

10014023L 2-52

Design Code/ Accept.VuitTest,est 'lest

140I 150
120" " ' "

1°°l[loo

% 8C_ "

CPU j/60

40

20

- 1 1 1 3 Endbtar_ _ _ _ _ _ _ _ 4 ._ 4

Phases

Figure 6: Prediction for CPU

4.3 Predictive models

The two clusters of Figure 5 are easiest to mea-

sure when all data points for each measure model are

availal)le. However, it is the very nature of predic-

tive models that some of this data is incomplete. We

are currently altering SME's predictive capabilities to
take this into account.

If data is available for new project P up through

point, i (e.g., values for po,pl,...,pi), then clustering
for P against each existing cluster will be only with

respect to these i + 1 points. That is, for each ch, ster
(:, it will be assumed that pi and ci have the same

value, and P's other values will be scaled accordingly.
Cluste,'ing will deternaine which cluster has the closest

shape to P's shape.

Once a matching cluster is found, it will be as-

sumed that project P has the same characteristics as

this found cluster and the succeeding values for P will

match the cluster's measure model for points i + 1
through 14.

The effect will be to scale P's original estimate with

respect to the cluster's estimate. For example, in Fig-

ure 6, if the cluster estimated a 50% completion by
point 8 and the actual data showed a 75% "comple-
triOn," then it can be assumed that the actual com-

pletion will be 150% since the relevant cluster is only
half finished. In this case it can be assumed that the

manager underestimated the resources needed for this

project. We are currently modifying SME's graphical
interface to show these predicted curves.

The predictive model for project P depends upon
both estimating the total resources needed in order to

compute the percentage for point Pi and estimating
the schedule in order to determine how far one has

progressed in the current development phase. Either

one, however, may not be accurate. For example, cur-

rent point P6 represents 50% coding, yet that is only
known when coding is complete. The current date

may possibly range from perhaps the 25% level (and

hence really represent, point Ps) to the 75% level (and

hence really represent, point P7) depending upon how
accurately the initial schedule was set up. The true

date will be known only after the coding phase is com-
pleted. However, in tile above paragraphs we have de-
scribed a mechanism to estimate resource needs when

we assume that the schedule is correct.

On the other hand, if the latest available project

point Pi is scaled to a cluster model horizontally along
phases instead of vertically (i.e., by changing the es-

timated schedule), we can predict future changes in

project schedule, ftowever, since only discrete mile-

stones of a schedule are used, they need to be quan-

tified before uunlerical scaling can be applied. We
are Iookiug at, extending the SME predictive model in
order to estin_ate both the resource needs as well as

l)otentia] bounds on the schedule based upon current
data.

It should be realized that the model's predictive

capabilities improve ,as a project develops. Very few

points are available for prediction early in the develop-

mcnl cycle leading to few differences among tile var-
ious clusters. On the other hand, late in the devel-

opment cycle where there is more variability among
the clusters, it may be too late to change develop-

ment models to account, for any potential problems.

IIow well the earl,,' predictions lead to significant dif-

fi_rences in project, development attributes is obviously

an issue we need to investigate.

4.4 Model evaluation

Aside from its primary use as a tool to aid man-

agement in predicting future behavior on a current

software development project, use of cluster analysis
permits SME to be used as a tool to evaluate new

models. If a model is proposed that describes some

attribute of development that is collected by the SEL

data base, then all projects within a cluster should

exhibit that attribute to a great extent.

For example, tile SEL is currently planning to en-

10014023L 2-53

z

=

}lance the SEL data base with additional predefined

measure models in addition to tile two models used

at present. Often the following attributes (and their

relevant values at NASA) are viewed as important at-

tributes of a development methodology:

• Computer use IBM or DEC environment

• Reuse of existing source code - Low, medium or

high reuse of existing source code

• Language - FORTRAN or Ada as a source pro-

gramming language

• Methodology - Cleanroom or standard NASA wa-

terfall development method

By choosing one value from each category, the SEL can

develop 24 possible models. A subset of these will be
built into the SEL data base as predefined models for

each project and each project will be assigned t.o one of

these categories. However, while they are often viewed
as crucial attributes, are these really discriminators

useful to different.late among projects?

If these are really discriminators of projecl devel-

opment, then projects within a single cluster should
all consist of tile same predefined measure model (or

at. least predominately so). We can then use our clus-

tering approach to determine tire effectiveness of the

new proposed models.

We can also use clustering to determine if there

are any relationships among measures, If a cluster for

Reported Change (RCH) consists of the same projects
as a cluster for Reported Error (RER), this indicates
that those two measures are closely related. If projects

A and B are in the same cluster for CPU, LOC and

RUN, then those projects are somewhat related.

This approach can be extended to any quantitative

model. Projects in the data base can be grouped ac-

cording to how well they meet the discriminators of

any new proposed measure. The projects can be clus-

tered, and if the models are appropriate, then clusters

should be somewhat homogeneous.

For example, cleanroom is a technique that ad-

dresses early verification of a design that should result

in fewer resulting errors (with less testing necessary)

later in the development cycle. If so, then measur-

ing reported errors (RER) per computer run (RUN)
should cluster eleanroom projects together, and the

plots should show high measure model values early in

the development cycle. We can use SME to test such
claims from this and other proposed models.

4.5 Evaluation of clustering

Clustering is effective in distinguishing measure
behaviors. For most of the measures studied, we

were able to yield clusters that differentiated behavior

among the projects, whereas the current SME would
consider them all similar and use the same measure

model on that data.

A current weakness, however, is that tile result-

ing clusters yield few common objective or subjective
characteristics. We believe that this is due more to the

nature of the current subjective files within the SEL

data base than in the clustering methodology itself.
The current data files are developed by the project

managers and contain attributes about the project

(e.g., external events such as schedule and require-
ments changes, team composition, environment com-

position). There is little about how management was

performed (e.g., we didn't test. enough, we started cod-

ing too soon). This is understandable given how tlw
data was collected. We need to develop methods to
collect this latter data in a non-threatening manner

from each project manager so that it can he fed back

to future project managers more effectively.

5 Conclusion

In this paper, clustering is presented ;L¢a mech-

anism for dynamically determining and altering the
information model that describes certain attributes of

the software development process. This permits t.tw

software manager to more accurately predict the fu-

ture behavior of a given project ba.sed upon similar
characteristics of existing projects in a data base. We

believe the resulting cluster models are fairly accurate
indicators of such behavior.

Clustering also permits rationale for deviations
from normal behavior to be determined dynamically

and are easier to generate than the existing expert

system approach. Preliminary evaluation of cluster-

ing leads us to believe that the resulting models are

fairly accurate indicators of such behavior.

In addition, it appears that some often used dis-

criminators may not be totally effective in classify-

ing projects. Size, programming environment and ap-

plication domain may unnecessarily separate projects
into categories that are ultimately the same (e.g., see

10014023L 2-54

Tables 2 and 3). Obviously, this needs further study.

We are in the process of modifying NASA/GSFC's

SME management tool for incorporation of these new
models into tile tool. We believe that this should

greatly improve SME's predictive capabilities. Mod-
ification of the data in the SEL subjective data files

should greatly aid ill the analysis and assessment as-

pects of SME.

Ilowever, the process is far from over. We also
intend to study alternative clustering and modeling

techniques (e.g., Optimal Set Reduction, Cosine) in
order to determine the best approach towards measur-

ing these critical attributes. In addition, we need to
observe how well early predictions of a project match

with subsequent, observations in order to be able to
use SME as an effective management planning and

tracking tool.

6 Acknowledgement

This research was supported in part by grant NSG-

5123 from NASA/(;SFC to the University of Mary-
land. \Ve would like to acknowledge the contribution

of aon Valett of NASA/GSFC and Robert Hendrick of

CSC as major developers of the original SME system
and for their and Frank McGarry's (,also of NASA)

helpful advice on proposed changes we are making to
SME.

References

[1] B, Boelnn. Sofheare £ng,_eering Economics.
Prenlice Ilall, Englewood Cliffs, NJ, 1981.

[2] L. C. Briand, V. R. Ba-sili, and C. J. Hetmanski.

Providing an empirical basis for optimizing the
verification and testing phases of software devel-

opment. In Proceedings of the IEEE International

Symposium on Software Reliability Engineering,
Research Triangle Park, NC, October 1992.

[31E. Chen and M. V. Zelkowitz. Use of cluster

analysis to evaluate software engineering method-

ologies. In Proceedings of the Fifth International

Conference on Software Engineering, San Diego,

CA, March 1981.

[41R. Chillarege, I. S. Bhandari, and et al. Orthogo-
nal defect classification -- a concept for in-process

measurements. IEEE Transactions on Software

Engineering, 18(11), November 1992.

[5] W. Decker, R. Hendrick, and J. Valett. The soft-
ware engineering laboratory (sel) relationships,
models, and management rules. Technical Re-

port SEL-91-001, The Software Engineering Lab-

oratory, NASA Goddard Space Flight Center,
Greenbelt, MD, February 1991.

[6] R. Hendrick, D. Kistler, and J. Valett. Software
management environment (sme) concepts and ar-

chitecture (revision 1). Technical Report SEL-

89-103, The Software Engineering Laboratory,
NASA Goddard Space Flight Center, Greenbelt,

MD, September 1992.

[7] L. Kaufman and P. J. Rousseenw. Finding Groups
in Data: An Introduction to Cluster Analysis.

John Wiley & Sons, New York, NY, 1990.

[8] R. E. Park. Software size measurement: A frame-
work for counting source statlnents. Techni-

cal Report 92-TR-20, Software Engineering Insti-

tute, Carnegie Mello University, Pittsburgh, PA,

September 1992.

[9] A. A. Porter and R. Selby. Empirically guided
software development using m,,tric-based classifi-

cation trees. IEEE Software, 7(52):46- 54, 1990.

[10] R. Selby, A. Porter, D. Schmidt, and J. Berney.
Metric-driven analysis and feedback systems for

enabling empirically guided software develop-
ment. In Proc. la th htterTtational Conference

on Software Engineering, pages 288-298, Austin,

TX, May 1991.

[11] J. Tian, A. Port,'r, and M. V Zelkowitz. An

improved classification tree analysis of high cost
nmdules based upon an axiomatic definition of

complexity. In Proc. :Vd lnter, ational Syrup. on

Software Reliability EngiT_eerin9, Research Trian-

gle Park, NC, October 1992.

[12] J. D. Valett. Automated support for experience-
based software management. In Proceedings of

the Second Irvine Software Symposium (ISS '92),

Irvine, CA, March 1992.

[13] A. von Mayrhauser. Software Engineering: Meth-
ods and Management. Academic Press, Inc., San

Diego, CA, 1990.

10014023L 2-55

=

o

I

i

i
I
=
=

I

=
i

i
I
I

!

!

........... 71_.7-_7--.i-:---7 -

........ _-:........-_----_:- -.-SECTION 3 - SOFTWARE

.... " .. .: .: ..:-._- -7:

.- ..- :.

I --
i

I• ___¢ _7].]._:_: : E

i
i

I

| .-->:-_ - __:.:_=:=_--_-::=___ : . .

..... :,,:_7-:-_-_:_>7_,_-_7-_____.. -_--..........._.........

m

..... !,
i

...... _- ___-........

_- _ it

m

........ _7 t

|

!11, L , i

SECTION 3mSOFTWARE MEASUREMENT

The technical paper included in this section was originally prepared as indicated below.

• "Measuring and Assessing Maintainability at the End of High Level Design,"

L. C. Briand, S. Morasca, and V. R. Basili, Proceedings of the 1993 IEEE Confer-

ence on Software Maintenance (CSM 93), November 1993

10014023L 3-1

N94- 35438

Measuring and Assessing Maintainability at the End of High Level Design

Lionel C. Briand, Sandro Morasca, Victor R. Basili
Computer Science Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD, 20742

1/y.

Abstract

Software architecture appears to be one of the main
factors affecting software maintainability.
Therefore, in order to be able to predict and assess
maintainability early in the development process
we need to be able to measure the high-level
design characteristics that affect the change
process. To this end, we propose a measurement
approach, which is based on precise assumptions
derived from the change process, which is based on
Object-Oriented Design principles and is partially
language independent. We define metrics for
cohesion, coupling, and visibility in order to
capture the difficulty of isolating, understanding,
designing and validating changes.

1 Introduction

It has been shown that system architecture has an
heavy impact on maintainability [R90, $90].
Numerous studies have attempted to capture the
high-level design characteristics affecting the ease
of maintenance of a software system [ITK84, R87,
$90]. Research in the field of design metrics [G86,
SB91, Z91, AE92] has often been conducted
according to a strategy intended to produce generic
metrics assumed to be applicable in a variety of
contexts and to many problem domains. However,
such an approach has forced researchers to work
without a clear framework and a well-defined goal.
This frequently led to some degree of fuzziness in
the metric definitions, properties, and underlying
concepts, making the use of the metric difficult,
the interpretation hazardous, and the results of the
various validation studies somewhat contradictory
[IS88, K88]. Some attempts were made to
constrain the context of application to a particular
programming language in order to come up with
precisely and unambiguously defined
metrics[AE92]. In other cases, the application
domain of those metrics was restricted, e.g., error-
prone subprograms [SB91], maintainability [R87].
In all cases (with the exception of [AE92], where
these issues were partially addressed), no precise

This work was supported in part by NASA grant

NSG-5123, UMIACS, and NSF grant 01-5-24845

link was made between the studied process (e.g.,
change process) and the metrics, no clear and
precisely defined assumptions were made about the
process itself, and metrics were not defined by
taking into account the specific issue to be
addressed (e.g., maintainability).
We intentionally place ourselves in a well-defined
framework (Ada [DoD83] and OOD[BO87]) and
intend to focus exclusively on the change process
during acceptance testing and maintenance, i.e., the
change process performed by personnel who did
not develop the software. Thereby, we propose
more precise and effective high-level design
metrics based on well-defined and verifiable
assumptions which are closely related to the
specific change process model instantiated at the
NASA Goddard Space Flight Center. Thus, the
applicability of those metrics is precisely defined,
their validation easier, and their predictive ability
more accurate. However, we also attempt to
separate Ada specific concepts from language
independent concepts in order to identify the part of
the approach that is reusable for other
programming languages.
Our goals can be expressed by using Basili's
G/Q/M template [BR88]:

Analyze the high-level design of a software
system for the purpose of prediction with
respect to change difficulty from the point of
view of the testers and maintainers.

Analyze the high-level design of a software
system for the purpose of evaluation with
respect to change difficulty from the point of
view of the designers.

From a modeling perspective, our long-term goal
is to be able to build models that predict change
difficulty for the maintenance process, which will
provide an early evaluation of maintainability,
thus allowing better architectural/design decisions.
This paper first provides in Section 2 basic
background information on the change process
model and general definitions about the system
constructs and the high-level design products.
Section 3 presents the underlying concepts leading
to the definitions of two basic metrics on top of
which we define metrics for capturing module
cohesion (Section 4), module coupling (Section
5), and coupling-based visibility control (Section

10014023L 3-3

PI_CliD_O PAGE BLANK IK)'i" FILMED
""_,:7 ?,lT.'7,_T_._=_Jtti.r_.J,rli.

6). Finally, Section 7 summarizes the paper and
presents the futuredirections of our research.

2 Background and Definitions

We fast present the change process as perceived in
our maintenance environment. Thus, we will be
able to identify the various aspects of change
difficulty (the quality perspective [BR88] of the
goals of Section 1) and link our assumptions to
this process so as to give a finn ground to our
metrics. Then, we provide definitions for high-
level design of a software system (the object of
study of the goals of Section 1) and its basic
constructs.

2.1 Change Process Model

In our environment of study (NASA Software
Engineering Laboratory at the Goddard Space
Flight Center), we view software maintenance as
being composed of four primary phases, each
encapsulating activities that may be performed
concurrently, as shown in Figure 1.
There is a key milestone in the change process
which is the decision of whether the change is

going to be implemented or not. This is done
based on a cost-benefit analysis after phase P1.
The information necessary to this analysis is
gathered during Pl and used for predicting the
difficulty of designing, implementing and testing
the change [BB92]. This information will
encompass a description of the change itself and of
the part of the system where the change is
perfcaw.d.

2.2 Object of Study

In the literature, there are two commonly accepted
definitions of modules. The t-h-stone sees a module

as a subprogram, and has been used in most of the
design measurement publications [M77, CY79,
HK84, R87, $90]. We choose the second category,
which takes an object-oriented perspective, where a
module is seen as a collection of routines, data and
type definitions, i.e., a provider of computational
services [BO87, CO2].

Definition 1: Module.
A module is either a (possibly generic)
subprogram, a (possibly generic) package, or a
task. As such, a module comprises a specification
and possibly a body.

Remark: Ada units vs. modules.

Compilation units are used in Aria for determining
the compilation order and strategy. Instead,
modules are def'medhere as Ada program units. We
use the term module because it is a language
independent concept. There are two kinds of Ada
compilation units [DoD 83]: library units and
secondary units. A library unit is either a package
specification, a subprogram specification, or a
whole subprogram which does not have a parent
unit. Therefore, a library unit can be a module
specification ot a whole module. An Ada secondary
unit is a unit with a patent unit and can only be a
module body.

Definition 2: Data declaration.
A data declaration is either a type or an object
(e.g., a constant, a variable, a formal parameter of
a (possibly generic) subprogram or an entry, a
generic formal objec0.

Definition 3: High-level Design product
The high-level design product is a collection of
module specifications, eith_ representing library
units or belonging to secondary units, related by
"uses" or "is a component of" [G92] relationships.

i

Isolate & i changeunderstand

the change

L '_
AI.I: Determine whal partt
of the system ere affected

by the change

A1.2: Determine what ate

the requirements autociated

with the change

_--_P31mplement

the change
new system

/ •

A4.1: Emmre that the

requirements msociated

with the change have
been met

A4.2: Enm_ that no

other requirements have
bee,, invalidated

Figure 1. Change process

10014023L 3-4

Since the remaining contents of units (e.g. local
variables, algorithms) still remains to be
determined in later design stages, our high-level
design metrics will be mostly based on the
information contained in module specifications.
However, additional information to what is visible
in the specifications may be available at the end of
high-level design. For instance, given the
specification of a module m, the designers have at
least a rough idea of which objects declared in m's
and other modules' specification will be
manipulated by a subprogram in m's specification.
It will be left to the person responsible for the
metric program to decide whether or not it is worth
collecting this kind of information, thus making
the designer describe which global objects will be
accessed by which subprograms or entries. For
example, formatted comments might be a
convenient way of conveying this information
through module specifications and therefore of
automating the collection of this type of
information.

3 Interactions

We are looking for a primitive measure that links
the change difficulty to the system design.
We therefore focus on the relationships that
propagate side effects from data declarations to data
declarations or subprograms when a change is
performed. Those relationships will be called
interactions and will be used to define metrics

capturing cohesion and coupling within and
between modules, respectively. Interactions
linking subprograms to subprograms or data
declarations will generally not be considered
because they are encapsulated in module bodies and
are therefore not detectable in our framework.
However, these interactions are likely to be
valuable although they will be rarely provided by
the designer at the end of high-level design. For
the sake of simplicity, we will not address this
issue in the remainder of this paper. In all cases,
these interactions will appear useful when looking
at low-level design.

Definition 4: Data declaration-Data declaration
(DD) Interaction.
A data declaration A DD-interacts with anotherdata

declaration B if a change in A's declaration or use
may cause the need for a change in B's declaration
or USe .

The DD-intemction relationship is transitive. If A
DD-interacts with B, and B DD-interacts with C,
then a change in A may cause a change in C, i.e.,
A DD-interacts with C.

Data declarations can DD-interact with each other

regardless of their location in the designed system.
Therefore, the DD-interaction relationship can link
data declarations belonging to the same module or
to different modules.

By DD-interactions(Dec_setl, Dec._set2), we will
denote the number of DD-interactions from the set
of data declarations Dec_setl to the set of data
declarations Dec_set2.
At the end of high-level design, we may not have
sufficient knowledge to understand with certainty
whether there will be an interaction between two
data declarations in the final software system,
because we are not aware of all the DD-interactions
present in the modules' bodies. On the basis of the
information available from module specifications
and their "uses" and "is a component of"
relationships [G92], and from additional
information provided by the designer, we can
identify (1) the specification data declaration pairs
that are known to DD-interact with each other, and
(2) the specification data declaration pairs which
may DD-interact with each other. We will say that
there is an actual DD-interaction between data

declaration pairs satisfying (1), and apotential DD-
interaction between data declaration pairs satisfying
(2). The latter kind of DD-interactions is only
detectable by examining both specifications and
bodies. Therefore, the set of actual DD-interactions
is a subset of the set of potential DD-interactions.
The DD-interaction relationships can be defined in
terms of the basic relationships between data
declarations allowed by the language, which
represent direct (i.e., not obtained by virtue of the
transitivity of interaction relationships) DD-
interactions. In Ada, data declaration A directly
DD-interacts with data declaration B if A is used in
B's declaration or in a statement where B is

assigned a value. As a consequence, as bodies are
not available at high-level design time, we will
only consider either the interactions detectable
from the specifications or known by the designer.
DD-interactions provide a means to represent the
relationships between individual data declarations.
Yet, since procedures are not datadeclarations, DD-
interactions per se are not able to capture the
relationships between individual data declarations
and subprograms, which are useful to understand
whether data declarations and subprograms are
related to each other and therefore should be
encapsulated into the same module (see Section 4
on module cohesion).

Definition 5: Data declaration-Subprogram (DS)
Interaction.

A data declaration DS-interacts with a subprogram
if it DD-interacts with at least one of its data
declarations.

10014023L 3-5

Whenever a data declaration DD-interacts with at
least one of the data declarations contained in a

subprogram specification, the DS-interaction
relationship between the data declaration and the
subprogram can be detected by examining the
high-level design. For instance, from the code
fragment in Figure 2, it is apparent that both type
TI and object OBJECTII DS-interact with

procedure PII, since they both DD-interact with
parameter PARII, one of procedure Pll's
specification data declarations.

package Pkl Is

type TI Is ...;
OBJECTI i, OBJECT12: TI;
procedure PI I(PARI I: in TI :=OBJECTI I);

package Pk2 is

OBJECTI3: T1;
type T2 is array (1..100) of T1;
OBJEC'T21: T2;
procedure P21(PAR21: In out T2);

end Pk2;

task Tk is
entry EI(PARI2: in nut T1);
entry E2(PAR22: in out T2);

end Tk,

OBJECr22: Pk2.T2;

end Pkl;
Figure 2. Program fragment

On the other hand, there may be DS-interactions
that are not detectable only on the basis of the Ada

code representing the high-level design, since they
are due to DS-interactions occuring in subprogram
bodies. For instance, from the code fragment

above, we cannot tell whether OBJECTi2 DS'
interacts (as a global variable) with procedure PI 1.
The designers may very likely be able to supply
this additional piece of information. More

specifically, the designers can answer in three
different ways:

(1) OBJECT12 DS-interact with PII
(2) OBJECT12 does not DS-interact with PI1
(3) the information they have is not sufficient

It is worth saying that answers of kind (2) provide
valuable, though negative, information on the DS-

interaction present in a system.

Remar_
Definition 5 states that DS-interaction is a

relationship between data declarations and a
subprogram, which is a specific kind of module.

Since we are interested in the interactions between
data declarations and algorithms, we did not

provide a more comprehensive definition also
accounting for the relationships between a data
declaration and a package or a task, which are the
other possible kinds of module. As a matter of

fact,

• packages are a means for grouping/encapsulating
data declarations and subprograms (and possibly
tasks and other packages). Therefore, we will not
examine the relationships between a data

declaration and a package as a whole.

• tasks are defined in terms of their entries, i.e.,

they can be seen as a collection of entries, which
we will see as a particular kind of subprograms.
Therefore, we will not examine the relationships
between a data declaration and a task as a whole.

For graphical convenience, both sets of interaction
relationships will be represented by directed
graphs, the DD-interaction graph, and the DS-
interaction graph, respectively. In both graphs (see
Figures 3 and 4, which respectively represent DD-
and DS-interaction graphs for the code fragment of

Figure 2), data declarations are represented by
rounded nodes, subprograms by thick lined boxes,
and packages and tasks by thin lined boxes. Solid
arcs represent interactions that can be known by
either inspecting the high-level design or
collecting information from the designers, dashed
arcs represent those interactions that are not
detectable from the high-level design and that will
not occur in the body, according to the designers'

opinion. (For simplicity's sake, in Figure 3 we
only represent direct DD-interactions.) For
instance, the existence of an DD-interaction

between object OBJECT12 and PARI I and the
lack of interaction between OBJECT13 and

PAR21 have been signaled by the designer. Since
this information may improve significantly the
accuracy of the count of DS-interactions and is in
many cases known by the designers, we strongly
recommend that the reader pay attention to this
issue.

Our approach to design measurement and
evaluation will be based on the above definitions

and will be guided by the general principle that

system architecture should have low average
module coupling and high average cohesion. This
is assumed to improve the capability of a system
to be decomposed in highly independent and easy
to understand pieces. Cohesion captures the extent
to which the data declarations and subprograms

that interact are grouped within the same modules,
whereas coupling captures their dispersion by

10014023L 3-6

looking at module dependencies and exports. These
issues are addressed in the next sections.

Pk

Figure 3. DD-interaction graph for the program
fragment in Figure 2

Pkl

1"11

Figure 4. DS-interaction graph for the program
fragment in Figure 2

4 Module Cohesion

It is generally acknowledged that a high degree of
cohesion is a desirable property of a module. Here,

after a general definition for cohesion, we provide
assumptions to restrict it to our specific
viewpoint--change. This allows the definition of
change-oriented cohesion metrics which are also
based on our OOD def'mition of module.

4.1 Definitions

Definition 6: Cohesion (CH)
Cohesion is the extent to which a module only
contains data declarations and subprograms which
are conceptually related to each other.

Assumption A-CH:
From our "change process" viewpoint, a high
degree of cohesion is desirable because information
relevant to a particular change within a module
should not be scattered among irrelevant
information. Data declarations and subprograms
which are not related to each other should be
encapsulated to the extent possible into different
modules. We believe that this issue is especially
important for activity AI.2 (see Figure 1) where
the change requirements have to be understood.

4.2 Cohesive Interactions

Since we place ourselves at the end of high-level
design and we want to look at the set of services
provided by a module, we are interested in
evaluating how fight are the relationships between
the data declarations declared within a module
specification, and between thedata declarations and
the subprograms declared there. We will capture
this by means of cohesive interactions.

Definition 6: Cohesive Interaction.
The set of cohesive interactions in a module is the
union of the sets of DS-interactions and DD-
interactions, with the exception of those DD-
interactions between a data declaration and a
subprogram formal parameter.

We do not consider the DD-interactions linking a
data declaration to a subprogram parameter as
relevant to cohesion, since they are already
accounted for by DS-interactions and we are
interested in evaluating the degree of cohesion
between data declarations (data), and procedures
(algorithms) seen as a whole.

Remark.

It is worth reminding the reader that those
relationships that cannot be detected by inspecting
the specifications, i.e., global variables interacting
with subprogram bodies, can actually be quite
relevant to cohesion evaluation, because they often
represent the connections between an object and

10014023L 3-7

the subprograms that access it; such connections
are the relationships that make an abstract object
cohesive.

4.3 Cohesion Metrics

Based upon the above definition of cohesive
interactions, we define a cohesion metric that
satisfies the following two properties.

Property 1: Normalization.
Given a module m, the metric cohesion(m)

belongs to the interval [0,1].

Normalization allows meaningful comparisons
between the cohesions of different modules, since

they all belong to the same interval.

Property 2: Monotonicity.
Let m1 be a module and ell its set of cohesive
interactions. If m2 is a modified version of ml
with one more cohesive interaction so that CI2
includes C11, then cohesion(m2) ->cohesion(m1).

Since there is uncertainty on the DD- and DS-
interactions present in a module, due to the
incompleteness of the information that can be
collected from the specifications and the designers,
we define not only a metric but the boundaries of
an uncertainty interval.

Definition7:RatiosofCohesiveInteractions.

NeutralRatioofCohesiveInteractionsOqRCI):
All unknown CIs are not taken into account

NRCI=#knownCIs/(#potentialCIs-#unknownCIs)

Pessimistic Ratio of Cohesive Interactions
(PRCI):
All unknown CIs are considered as if they where
known not to be actual interactions.

PRCI = #knownCIs/#potentialCIs

Optimistic Ratio of Cohesive Interactions (ORCI):
All unknown CIs are considered as if they where
known to be actual interactions

ORCI=(#knownCIs #unknownCIs)/#potentialCIs

If PRCI, NRCI, and ORCI ate all not undefined, it
can be shown that

PRCI < NRCI < ORCI

Figure 5 shows representative and interesting
examples of module cohesion computation. Each
thin lined box represents a module specification.
T's, O's, and SP's will characterize types, objects
and subprograms, respectively. We did not
represent procedure parameters, since they do not
belong to any cohesive interaction, nor packages
nor tasks, since they ate inessential to our
discussion. However, we represented all direct and
transitive interactions.

Cu¢l C,w¢2

Cw¢5

Figure 5: Cohesion examples

Case 1: No cohesive interaction is present

PRCI = 0/12 = 0
NRCI = 0/12 = 0
ORCI = 0/12 = 0

Case 2: All possible cohesive interactions ate
present

PRCI = 12/12 = 1
NRCI = 12/12 = 1
ORCI = 12/12 = 1

Case 3: Incomplete interaction graph

PRCI = 4/7 = .571
NRCI = 4/5 = .8
ORCI = 6t7 = .857

10014023L 3-8

Case 4: Isolated object
O1 has been added to Case 3. This decreases
cohesion because O1 has no known interactions
with the rest of the module data declarations and
subprograms.

PRCI = 4/12 = .333
NRCI = 4/7 = .571
ORCI = 9/12 -- .75

Case 5: Single object

PRCI = 0/3 = 0
NRCI (=0/0)= undel'med
ORCI = 3/3= I

No information is available on the interactions
between object O and the three subprograms.
Therefore, ORCI and PRCI provide the bounds of
the admissible range for cohesion, and NRCI is
undefined, i.e., it could take any value in between.
The more incomplete the information, the wider
the uncertainty interval.

5 Module Coupling

According to commonly accepted design
principles, design must show low coupling
between modules. In this section, we first give
general definitions and assumptions on coupling
(Section 5.1). Then, we present a set of metrics
(Section 5.2), and discuss the issue of genericity
(Section 5.3) in the context of coupling.

5.1 Definitions

Definition 8: Import Coupling of a module (IC):
Import Coupling is the extent to which a module
depends on imported external datadeclarations.

Assumption A-IC:
The more dependent a module on external data
declarations, the more difficult it is to understand
in isolation. In other words, the larger the amount
of external data declarations, the more incomplete
the local description of the module specification,
the more spread the information necessary to
isolate and understand a change. Thus, if there is a
high average coupling within a set of modules,
both activities A1.1 and A1.2 in Figure 1 are
affected. The design of the change (phase P2 in
Figure 1) is also more complex.

Definition 9: Export Coupling of a module (EC).
Export coupling is the extent to which a module's
internal data declarations affect the data declarations
of the other modules in the system.

Assumption A-EC:
Export coupling is related to how a particular
module is used in the system. As such, EC should
have a direct impact on understanding the effect of
a change on the rest of the system, and on
validating the system after the change.
The larger the number of DD-interactions with
external data declarations, the larger the likelihood
of ripple effects when a change is implemented
(activity A4.2 in Figure 1). Also, the larger the
number of potential DD-interactions, the more
complex testing and verification become, since
potential side effects have to be identified and
addressed based on actual DD-interactions
(activities A4.1 andA4.2 in Figure 1).

The import coupling of a module will be expressed
in terms of the actual DD-interactions between
imported/visible external data declarations (i.e.
global) and the internal data declarations of the
module. Export coupling will be based on both the
actual and potential DD-interactions between
locally defined data declarations and the other data
declarations within the scope of the module.
Actual DD-interactions are important because they
capture the actual dependencies between a module
and its context of declaration and therefore should
be closely related to the likelihood of ripple
effects. According to the defined assumption, the
number of potential DD-interactions of a module
with its context of declaration should be related to
the ease of verifying and testing the side effects of
the implemented change. These potential DD-
interactions will simply be determined by the
programming language visibility rules.

5.2 Metrics Based on Coupling

The issue will be first addressed by ignoring
generic modules for the sake of simplification.
Genericmodules and their impact on the defined
metrics will be treated in Section 5.3.

Definition I0: Global versus Locally defined data
declarations

We will denote by Global(m) the set of all the
external data declarations imported by a module m,
and by Local(m) the set of all the locally defined
data declarations in module m.

Definition 11: Scope of a module
Scope(m) is the set of all data declarations declared
outside the module for which the internal data
declarations of module m are visible.

10014023L 3-9

±

Definition 12: Import Coupling
We will use the following metric to capture

Import Coupling

IC(m) = DD-interactions(Global(m), Local(m))

In the above definition, we have considered all sort

of imports equally. However, in terms of impact
on the change difficulty in a particular module,
imports from the same hierarchy or the same
subsystem do not equate with imports from
outside the module's hierarchy or subsystem. There
are several reasons for this, e.g., people may have
a better familiarity with the subsystem they are in

charge of maintaining, understanding a module in
another hierarchy increases the load of information
to be known for understanding the change.

Although we do not fully investigate this complex
issue here, a simple solution to refine IC could be
to define all the metrics presented below separately
for several categories of coupling, e.g., coupling
with modules outside the subsystem.
Each box in Figure 6 represents a module
specification. Submodule spedfications C2 and C3
are located in their parent's body CI. C2 is
assumed to be declared before C3 and therefore
visible to C3. The lnstO, Sub(), Derived(),

ValDepO and ConstO functions specify if one data
declaration is respectively the object inslantiation
of a type, a subtype of a type, the derived type of
another type, an object dependent on the value of
another object (e.g. initialization), an object used
to constrain a type or another object definition.
Note that the same data declaration may interact
with several data declarations, e.g., T21 in Figure

6. Tij and Oij data declarations represent
respectively types and objects in module Ci. FPij
represents subprogram formal parameters. Even
though they are objects, we identified them by a
different symbol in order to Improve the figure
readability. The IC values for the modules in

Figure 6 are computed as follows

IC(m) = direct DD-interactions + transitive DD-
interactions

IC(C1) = 0 + 0 = 0
IC(C2) = 3 + 1 = 4
-- from C1 (direct: O11 twice,T12; transitive: T21)

IC(C3) = 2 + 2 = 4
-- from C1 (direct: T12; transitive: T12 twice) and

C2 (direct: T21)
IC(C4) = 1 +0= 1 -- from C1 (direct: Tll)

Definition 13: Potential and Actual Export

Coupling
As presented in the assumption A-EC, both actual

and potential coupling need to be measured.

13:_)=_(mX Sa_0n))

EC-Potential(m) = ILocal(m)l- IScope(m)l

CI

TII

Ol 1=Irm(Tl 1)
FPi 1, FP12
T12

_d

with

C4

"1"41
O41 = In_t'r41)
FIll = Itm0"l i)
[_12 = IJr_O'4 I)

C2 C3

T21 = Dcrivod(TI2) T$1 = SubO'12)
T21 ffiCorot(OH) O31 = ltmff'2D
O21 = ValD¢_O11) R_ I=Ima(T31)
FP2 lffik_tt'r21)

Figure 6: Calculation of IC and EC with non-
generic components only

In the example of Figure 6, illustrated by the
results presented below, we see that C1 expectedly
shows the largest actual and potential export

coupling.

EC-Actual(m) = direct DD-interactions + transitive
DD-interactions

EC-Actual(C1) = 5 + 3 = 8
-- to C2 (direct: T12, Oll twice; transitive: T12),

-- to C3 (direct: T12; transitive: T12 twice),
-- to C4 (direct: Tll)
EC-Actual(C2) = 1 + 1 = 2
-- to C3 (direct: T21; transitive: T21)
EC-Actual(C3) = 0 + 0 = 0
EC-ActuaI(C4) = 0 + 0 = 0

EC-Potential(C1) = 5- 10 = 50
EC-Potential(C2) = 3 • 3 = 9

EC-Potential(C3) = 3 • 0 = 0
EC-Potential(C4) = 3 • 0 = 0

We now introduce a normalized measure, Relative

Dependency, to capture how dependent a module is
on external data declarations with respect to the
whole set of data declarations it can access, i.e.,
the external data declarations and its own data
declarations. This normalized measure may
contribute to capture the difficulty of the

: 10014023L 3-10

understanding process described in assumption A-
IC, along with the absolute IC measure.

Definition 14: Relative Dependency (RD)
The relative dependency of a module m is the ratio
of Import Coupling normalized by the total
number of DD-interactions, i.e., within m itself
and between the data declarations external to m and
m.

REKm)= IC(m)/(DD-interactions(I_al(m),
Local(m)) + IC(m))

RD(m) is therefore a unitless measure of import
coupling of the module with the rest of the system
which is relative to the total number of DD-
interactions. Thus, a large module with a large
import coupling might show a somewhat low
relative dependency.

For Figure 6, we obtain the following results:

DD-interactions(C1, C1) = 1
DD-interactions(C2, C2) = 1
DD-interactions(C3, C3) = 1
DD-interactions(C4, C4) = 2

RD(C1) = 0/(1+0) = 0
RIXC2) = 4/(1+4) = 0.8
RD(C3) = 4/(1+4) = 0.8
RD(C4) = 1/(2+1) = 0.33

We can differentiate two main families of modules,
based on IC and EC: "servers", i.e., provider of
services, and "clients", i.e., users of services.

Definition 15: Coupling type (CT)
The coupling type of a module m is the ratio of
Import Coupling normalized by the total Export
and Import Coupling of module m.

CT(m) = IC(m)/(EC-Actual(m) + IC(m))

When CT < 0.5, then the module is more of the
type "server"; otherwise, it can be classified as a
"client". The first type of modules is expected to
be more often at the top of the system hierarchies
while the second type should be more common at
the bottom of those hierarchies. This is what
happens in the example in Figure 6, as the results
presented below show.

CT(C1) = 0/(8+0) = 0 -- server
CT(C2) = 4/(2+4) = 0.66 -- mc_cd'thedimttype
CT(C3) = 4/(0+4) = 1 -- client
CT(C4) = 1/(0+1) = 1 -- client

Exceptions to this pattern may be the symptom of
anomalies in system design.

5.3 The Treatment of Generic
Modules

There are two possible ways of taking into account
genetics when calculating coupling. Either each
instance may be seen as a different module or a
generic may be seen as any other module whose
scope/global data declarations is/are the union of
the scope/global data declarations of its instances.
The second solution does not consider instances as
independent modules and appears to be more
suitable to our specific perspective (i.e., the
change process) since instances cannot be modified
directly and only one module is to be maintained:
the generic module. In other words, if N instances
are generated, we will not count coupling as if N
modules were actually developed since those
instances may only undertake change through their
corresponding generic module. Generic formal
parameters allow for the substitution of objects,
types and subprograms. This substitution does not
have any impact on the number and the kind of
exported data declarations (i.e. same number of
type, object declarations respectively imported and
exported).
When calculating import coupling, we will count
the DD-interactions of the generic modules with
the union of the global data declarations specific to
their instances.When calculating export coupling,
we will count the DD-interactions of the generic
modules within the union of the scope of their
respective instances. Consistent with the definition
of DD-interaction, generic formal parameters DD-
interact with their particular generic actual
parameters (i.e. type, objec0 when the generic
module is instantiated since a change in the former
may imply a change in the latter.
This is what the following example illustrates.
The graphical formalism is identical to the one
used in Figure 6 and function New(G, P)
represents a new instantiation of a generic package
or subprogram G with a generic formal parameter
GFPI and its generic actual parameter set [PI,
,°2}.
C2 and C3 only import data declarations from G
(with TGI). C1 imports from G (PI, P2 DD-
interact with FGP1).

IC(m) = direct DD-interactions + transitive DD-
interactions

IC(C1) = 2 + 0 = 2
IC(C2) = 2 + 1 = 3
IC(C3) = 3 + 1 = 4
IC(G) = 0 + 0 = 0

-- from G
-- from G and C 1
-- from G and C 1

10014023L 3-11

EC(m) = direct DD-interactions + transitive DD-
interactions

EC-Actuai(C1) = 2 + 2 = 4
EC-Actual(C2) = 0 + 0 = 0
EC-Actual(C3) = 0 + 0 = 0
EC-Actual(G) = 5 + 0 = 5

-- to C2, C3

-- to C1, C2, C3

Cl

rl 1
_1 = New(O, Pl)
G2 = New(G, P2)

with

Gen_cG

GFPI

TGI

FOOl = I=t(TGI)

C2 C3

"1"21= Dwivod(Tl 1) I"31 = Dcrivqxt(T11)

O21 = Ima('r21) 031 = huaO_l)
Flr21ffilma(Ol.TGl) 032 = I_(G2.TGI)

Fill = I,-t(G2.TGi)

Figure 7: Genetics when calculating coupling

The RD metric shows that G is the only fully

independent module. The others strongly depend on
external data declarations:

DD-intemctions(C 1) = 0
DD-interactions(C2) = 1
DD-interactions(C3) = 1
DD-interactions(G) = 1

RIMC1) = 2/(0+ 2)= 1
RD(C2) = 3 / (1 + 3) = 0.75
RD(C3) = 4 / (1 + 4) = 0.8
RD(G) = 0 / (1 +0)=0

6 A Visibility Control Metric Based

on Coupling

As opposed to the metrics presented in previous
sections, this metric does not characterize modules
but sets of modules. Here, we want to assess to
which extent visibility is controlled in the design
of a system, subsystems or any system part [G86,
AE92]. Thus, we want to identify design flaws
related to visibility.

Assumption A-VC:

If the system, the subsystem or the hierarchy has
been designed by following minimal visibility
rules, modules with larger potential export
coupling should also have larger actual export
coupling. This is the case in the above example
where the ranking according to EC-Potential is
identical to the ranking by EC-Actual. Therefore,
we want to measure the correlation between EC-
Actual and EC-Potential in order to determine
whether or not highly visible modules are also
highly used modules. In other words, this can be
interpreted as how well visibility is controlled
within the system or a part thereof.

Remark.
We do not intend to judge the designer work
through this process, since other constraints may
bias the design towards a non optimal visibility
control. We look at it from the narrow perspective
of the change process, leaving to the designer the
decision of possible tradeoffs between
maintainability and other criteria, e.g.,
performance.

We do not want the measure of correlation to be
based on parametric assumptions since we do not
know what kind of relationship to expect between
actual and potential export coupling[CAP88]. One
way of doing it is to use a non-parametric statistic
which takes into account the rank of each module
with respect to both EC-potential and EC.actual.
This type of statistic does not require any
functional assumption and is moreover robust to
oufliers. Thus, we will be protected against
illusory strong correlations due to outliers and
falsely weak correlations due to wrong functional
assumptions. If visibility is close to minimal, we
assume the ranks of the modules to be similar

with respect to those two metrics.

Definition 16: Visibility control (VC)
The visibility control of a set of modules SM
(VC(SM)) is measured by means of the
Spearman's rank correlation coefficient [CAP88]
between the actual Export Coupling and the
potential Export Coupling

VC(SM)=I-[EmE SM(D2(m))/(ISMI(ISMI 2- I)/6)]

whereD(m) = Rank(EC -Actual(m))-Rank(EC-
Potential(m))

The larger VC(SM), the closer to minimal the
visibility. When there is no association, it can be

- IO014023L 3-12

shown that Z,m_SM(Distance2(m)) = (ISMI(ISMI 2
- 1) / 6), so VC(SM) = O.

7 Conclusions

In this paper, we have presented a comprehensive
approach for evaluating the high-level design of
software systems which is summarized by the
following characteristics:

• early available metrics based on precisely def'med
assumptions and related without ambiguity to
the defined change process model

• definitions of module cohesion, module
coupling and visibility control consistently
based on the notion of interaction, which is
closely related to the phenomenon of change side
effects

• an OOD [BO87] view of a software module as

opposed to the usual subroutine perspective
[M77, YC79] of coupling and cohesion
evaluation

• a clear separation between Aria-specific and
language-independent concepts.

Our future research will encompass:

• the definition and refinement of other higher-
level metrics based on module coupling and
cohesion that will characterize higher-level
constructs, e.g., module hierarchies,
subsystems.

• the experimental validation of the proposed
metrics with respect to change difficulty (i.e.,
man-hours) and size (i.e., number of modules

changed, lines of code removed, changed, added).
• the development of high level metrics based on

other software engineering principles, such as
information hiding and muse.

Acknowledgments

We thank Bill Thomas and Chris Hetmanski for

their helpful comments on the earlier drafts of this
paper.

References

[AE92] W. Agresti and W. Evanco, "Projecting
Software Defects from Analyzing Ada Designs',
IEEE Trans. Software Eng., 18 (11), November,
1992.

[BB92] L. Briand, V. Basili, "A Classification
Procedure for the Effective Management of Changes
During the Maintenance Process', Conference on
Software Maintenance, 1992, Orlando, Florida.

[BO87] G. Booch, "Software Engineering with Ada',
Benjamin/Cumming Publishing Company, Inc.,
Menlo Park, California, 1987.

[BRg8] V. Basili and H. Rombach,"The TAME
Project: Towards Improvement-Oriented Software
Environments', IEEE Tram. Software Eng., 14 (6),
June, 1988.

[CAP88] J. Capon, "Elementary Statistics",
"Statistics for the Social Sciences", Wadsworth
Publishing Company, 1988.

[CY79] E. Yourdon, L. Constantine, "Structured
Design', Prentice Hall, 1979

[DoD83] ANSI/MIL-STD-IgI5A-1983, Reference
Manual of the Ada Programming Languages, U.S.
Department of Defense, 1983

[G86] J. Gannon, E. Katz, V. Basili, "Metrics for Ada
Packages: an Initial Study', Communications of
the ACM, Vol. 29, N. 7, July 1986.

[G92] C. Ghezzi, M. Jazayeri, D. Mandrioli,
"Fundamentals of Software Engineering', Prentice
Hall, Englewood Cliffs, NJ, 1992

[HK84] S. Henry, D. Kafura, "The Evaluation of
Systems' Structure Using Quantitative Metrics',
Software Practice and Experience, 14 (6), June,
1984.

[IS88] D. Ince, M. Shepperd, "System Design
Metrics: a Review and Perspective', Proc. Software
Engineering 88, pages 23-27, 1988

[K88] B. Kitchenham, "An Evaluation of Software
Structure Metrics', Proc. COMPSAC 88, 1988

[M77] J. Myers, "An Extension to the Cyclomatic
Measure of Program Complexity', SIGPLAN
Notices, 12(10):61-64, 1977

[R87] H. D. Rombach, "A Controlled Experiment on
the Impact of Software Structure and
Maintainability:', IEEE Trans. Software Eng., 13
(5), May, 1987.

[R90] H. D. Rombach, "Design Measurement: Some
Lessons Learned', IEEE Software, March 1990.

[$90] M. Shepperd, "Design Metrics: An Empirical
Analysis', Software Engineering Journal, January
1990.

[SB9I] R. Selby and V. Basili, "Analyzing Error-
Prone System Structure', IEEE Trans. Software
Eng., 17 (2), February, 1991.

[Z91] W. Zage, D. Zage, P. McDaniel, I. Khan,
"Evaluating Design Metrics on Large-Scale
Software', SERC-TR-106-P, September 1991.

10014023L 3-13

k

....... . _ ___L_._:__'_:__'-.:-,::::._ :

_= - _ _

C

_ .
.._._- TC "-

_. _ =-C;_-+T _ _

!
J

I

I

...... _ ---__ _ _ I I

==_
i

I!

I

I

I

_iI
___z_:_ _

[If, _- _A' _................ i

SECTION 4mTECHNOLOGY EVALUATIONS

The technical paper included in this section was originally prepared as indicated below.

• "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"

M. Stark, Proceedings of the Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications, September 1993

10014023L 4-1

N94- 35439

IMPACTS OF OBJECT-ORIENTED TECHNOLOGIES:
SEVEN YEARS OF SEL STUDIES

Mike Stark

SOFTWARE ENGINEERING BRANCH

Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

(301) 286-5048

f

/ co5

ABSTRACT

This paper examines the premise that object-oriented technology (OOT) is the most
significant technology ever examined by the Software Engineering Laboratory. The
evolution of the use of OOT in the Software Engineering Laboratory (SEL) "Experience

Factory" is described in terms of the SEL's original expectations, focusing on how
successive generations of projects have used OOT. General conclusions are drawn on how

the usage of the technology has evolved in this environment.

INTRODUCTION

The Software Engineering Laboratory (SEL) spon-

sored by the National Aeronautics and Space
Administration/ Goddard Space Flight Center

(NASA/GSFC), has three primary organizational

members: the Software Engineering Branch of

NASA/GSFC, the Department of Computer Sci-

ence of the University of Maryland, and the

Software Engineering Operation of Computer

Sciences Corporation. It was created in 1976 to

investigate the effectiveness of software engineer-

ing technologies applied to the development of

applications software. As it seeks to understand the
software development process in the GSFC envi-
ronment, the SEL measures the effects of various

methodologies, tools, and models against a baseline
derived from current development practices.

In the SEL production environment, the language
usage is approximately 70 percent FORTRAN,

15 percent Ada, and 15 percent C. This is in contrast

to the almost 100-percent FORTRAN environment

in 1985. Projects typically last between two and

four years, and they range in size from I00,000 to
300,000 source lines of code (SLOC). A typical

project consists of between 20 percent and 30 per-
cent code reused from previous projects.

The SEL has examined many technologies, some of

which have major effects on how software is

developed in the SEL production environment,

where ground-support software is produced for the

Flight Dynamics Division (FDD) at Goddard

Spaceflight Center (GSFC). One technology,

Object-Oriented Technology (OOT), has attracted

special notice in recent years, causing Frank

McGarry, head of Goddard's Software Engineering

10014023L 4-3

f'_ lm.,l_l[BLANK NOT FILE,.r.D

Branch, to remark a year ago that "Object-Oriented
Technology may be the most influential method

studied by the SEL to date" (Reference 1).

THE EXPECTATIONS AND
REALITY OF OOT

The development of highly reusable software is one

of the promises of OOT. The initial expectation for
OOT was that this increased reuse would yield

benefits in the cost and the reliability of software

products. In addition, it was expected that OOT
would be more intuitive than the structured devel-

opment traditionally used in this environment,

making the development process more efficient.

Therefore, the SEL expected that, in addition to the

reuse benefits, the cost of developing new code
would also decrease.

The specific measures applied to assess the effect of

OOT include cost in hours per thousand source lines

of code (KSLOC), reliability by measuring errors

per KSLOC, and the duration of the project in

months. To date, OOT has been applied on eleven

projects in the SEL. These projects can be grouped

into three families of completed projects and an

ongoing effort to develop generalized flight dynam-
ics application software.

The completed projects (Figure 1) include three
early Ada simulators built between 1985 and 1988,

as well as three FORTRAN ground-support sys-
tems developed from the Multimission Three-Axis

Attitude Support System (MTASS) and four telem-

etry simulators developed from multimission simu-

lator code, all of which multimission applications

were developed between 1988 and 1991.

During the seven years the SEL has been experi-

menting with 00% developers have gained more

understanding of which object-oriented concepts
are most applicable in the FDD environment. The

most important part of the evolution is the applica-

tion of object-oriented concepts to a greater portion
of the development life cycle over time. The

knowledge gained during the development of these

three families of systems is being applied in the

development of generalized flight dynamics ap-
plications.

Despite its later appearance chronologically, the

MTASS family of systems (Figure 2) should be

GRODY

GOADA
m

GOESIM

UARSAGSS
m

UARSTELS

EUVEAGSS
u

EUVETELS

EUVEDSIM

SAMPEXAGSS
i

SAMPEXTS

POWITS

DURAllON - MONTHS

100

Figure 1. Projects Using Object-Oriented Technology

10014023L 4-4

High level design

Figure 2. MTASS Design

examined first because it represents a modest

infusion of OOT. MTASS started with a ground-

support system that was developed as a common

system for two different satellites, the Upper

Atmosphere Research Satellite (UARS) and the
Extreme UltraViolet Explorer (EUVE) satellite. It
was then reused for the Solar, Anomalous, and

Magnetosphere Particle Explorer (SAMPEX).

All ground-support systems read in telemetry and

produce attitude (spacecraft orientation) estimates.
The difference is that, where previous systems had

stored all sensor data in one f'tle specifically

designed for the mission, MTASS developed

separate interface routines and file formats for each
kind of sensor. Only one mission-specific, front-

end telemetry processor had to be developed for
each new mission.

This basic grouping of data and of operations on the
data is the most important object-oriented concept
in the FDD environment. This change alone

increased code reuse from the baseline 20 percent to

30 percent to around 75 percent or 80 percent.

It should be emphasized that the use of OOT on

these projects was modest. The implementation

language is FORTRAN, and the standard structured

design notation was used to document the system.
The object-orientation of the sensor model design

was recognized during coding rather than con-
sciously planned during design. Nonetheless, this

one simple concept has had tremendous benefit in

developing ground-support software faster and at a
lower cost.

The earliest purposeful use of object-orientation in
the SEL environment was associated with the

introduction of Ada in 1985. The first Ada project,

the Gamma Ray Observatory (GRO) Dynamics"
Simulator in Ada (GRODY), was developed as an

experiment in parallel with an operational
FORTRAN simulator. Previous Ada experiments

(Reference 2) had produced designs and code that
looked like Ada versions of FORTRAN systems.

To avoid this, the GRODY team was trained in a

variety of design methods, including Booch's

Object-Oriented Design (OOD) method (Reference

3), stepwise refinement, and process abstraction. In
addition, one of the team members had an academic

background in OOD.

OOD emerged as a clear favorite, but in early 1985
Booch's method was not mature enough to support

large production projects. Stark and Seidewitz

developed the General Object-Oriented Design

(GOOD) method during the GRODY project to
meet these needs (Reference 4). Its first application

was on the Geostationary Operational Environmen-

tal Satellite (GOES) Dynamics Simulator in Ada

(GOADA), a project started in 1987. The GOES

Telemetry Simulator (GOES[M) was also imple-
mented in Ada. GOESIM was developed using

structured design techniques, although GRODY

packages designed with an object-oriented
approach were reused on GOESIM.

The goal of the early Ada simulation projects was to
learn the appropriate use of the Ada language, with
a view towards increasing software reuse. Other

goals were considered less important. The GRODY

team, for example, was specifically instructed not

10014023L 4-5

to worry about the real-time requirement being

imposed on the FORTRAN simulator, and in fact

GOADA was able to achieve higher than usual
reuse from GRODY code. However, the lack of

attention to performance led to systems with

disappointing performance.

The SEL responded to this issue by studying the

performance of the GOADA simulator in detail to

determine if the performance problems were caused

by the Ada language, the OOD concept, or by the

GOADA design itself. The studies estimated the

effect of various improvements on the execution

speed of a simulation. These improvements

included changes such as removing repeated inver-

sion of the same matrix from an integrators

derivative function or simplifying the internal data

structure of an objects state. The inefficiencies were

not caused by the use of object oriented technolo-

gies, and improving the performance with these
corrections would not compromise the object-ori-

ented design. Figure 3 shows that making all these

changes to the full simulator would improve

performance to the levels attained by similar
FORTRAN simulators.

The next generation of projects is a multimission
telemetry simulation architecture, built around Ada

generic packages. Figure 4 shows how two sensor

models use a generic sensor package for common

functions such as writing reports and simulated data

files. Here, each sensor has its own specific

modeling procedure that is used to instantiate the

generic. In addition, these model procedures are

built around other generics that provide common
functionality such as modeling sensor failures or

digitizing simulated sensor data. The arrows indi-

cate dependencies between software modules. For

example, the Gyro object depends on procedure

Gyro_Model to provide gyro specific functionality,

and it instantiates the Generic Sensor package to

provide more general sensor capabilities. One of the
interesting consequences of the extensive use of

generics is that the system size decreased; the

previous generation of Ada telemetry simulator
contained 92 KSLOC, but this multimission simu-

lator contains only 69 KSLOC.

This architecture was the first simulator designed to
facilitate reuse from mission to mission. Unlike the

MTASS system, this simulator does not need a

mission-specific subsystem to handle telemetry;

the telemetry formats can be set by run-time

parameters. When this strategy is used appropri-

ately, the reuse levels approach 90 percent verbatim

code reuse, with the remaining part undergoing
minor modifications.

While this 90-percent reuse level has helped reduce
software costs and shorten development schedules,

it has only done so on a limited class of systems.

When the telemetry simulator was reused for a new

class of systems (spin-stabilized spacecraft), the

system complexity increased, reuse decreased, and

run-time performance suffered. MTASS had a

similar problem when it was applied to a spacecraft

that did not have a sensor on which the original
MTASS design depended.

In addition to variations between spacecraft, simu-

lators and ground systems contain many common

models. However, the current practice is to create

separate systems from separate specifications. The

way to account for variations between satellites and

to exploit commonality between software systems
is to perform domain analysis, rather than attempt-

ing to generalize the specification of a single

satellite's simulator and ground-support system.

In the FDD, this domain analysis is being done as

part of a generalized system development initiative.

The attempt to develop generalized software to

support multiple flight dynamics applications was

based on the experiences of the projects described
above. The multimission simulators demonstrated

the feasibility of generic architectures, and it had

been demonstrated that applying the object-

oriented concepts of abstraction and encapsulation
was sufficient to increase reuse dramatically. Final-

ly, the existing designs were highly reusable, but

had severe limitations in the areas of adaptability

and run-time efficiency.

The key concepts selected for generalized system

development in the FDD are to perform object-ori-

ented domain analysis, and to have a standard

implementation approach for the generalized

models. Figure 5 shows a typical diagram from the

generalized specifications.

The boxes are generalized superclasses with their
subclasses listed inside; Gyro, Sun Sensor, and Star

10014023L 4-6

11:oo

ll:S4

CPU time for 20-minute
slmulatJon (GOADA)
(VAX 8820 CPU minutes)

E_ Estimates

In FORTRAN examples

Figure 3. Impact of Performance Goals

I

/1 Gym

!

Gym I _ Genedc n
Model I II Sensor In

I _------.J

Sun

Sensor

I Sun
Sensor
Model

Figure 4. Multinfission Telemetry Simulator Design

10014023L 4-7

Gym
Sun Slm_
Star Came_

Slllmllel

Bltl:h leul ilqUllnm

Kalm_ filter

I-_ 14o<Jll

I FoI_ Inll_rMIon

Figure 5. Generalized System Specifications

Camera, for example, are subclasses of Sensor. The

arrows between categories represent dependencies

between classes. For example, estimators depend

on Sensor for measurements and Dynamics for state

propagation. These dependencies are matched in
the implementation with Ada generic formal

parameters. The classes themselves are imple-
mented as abstract data types in Ada packages. Each

class shown on the diagram has a corresponding
text specification that defines the member func-

tions, user parameters, state data, and dependencies

on other classes and categories. Categories also

have text specifications for an abstract interface

containing the functions common to all classes in

the category. With this generalized development
effort, object-oriented domain analysis and stan-

dard implementation, as well as other features of the

object-oriented paradigm, are now being applied to

the entire software life cycle.

With the successive generations of object-oriented

development efforts defined, the next step is to

examine how the SEL's approach has changed
between 1985 and 1992. The approach has evolved

in what concepts are used, when they are used in the

life cycle, and how they are taught.

The concepts of data abstraction and encapsulation,

used from the beginning, have themselves enabled

the high reuse observed on the MTASS system;

even the second Ada simulator attained higher reuse
than is typical for similar FORTRAN simulators.

The multimission telemetry simulator introduced
the idea of inheritance by taking a general model for

sensors and tailoring this model for each type of

sensor. It also introduced the idea of parameterizing

dependencies with Ada generic formal parameters.

The generalized application work added the use of

abstract data types, where previous systems had

implemented objects as state machines. The gen-

eralized systems also have a superclass/subclass

hierarchy limited to superclasses (called "Catego-

ries") and one level of subclasses for each super-

class. Dynamic binding is coded using Ada case

statements, not an object-oriented programming

language feature.

Having support for object-oriented programming in

Ada would remove the need to write this code,

which would reduce development costs. However,

the simple data abstractions provided by Ada

packages have already increased reuse levels from

approximately 40 to approximately 90 per cent of

the delivered code, so the remaining potential cost

reductions are dominated by those already attained.

Dynamic binding would reduce the tedium of

implementing case statements to handle run-time

dispatching, but it is not the most important

characteristic of object-oriented programming lan-

guages from a project cost point of view.

In addition to the increased reuse, the evolution to

object-oriented development affected the reliability

and changeability of the system. Table 1 shows the

effort needed to determine what change is necessary

to correct an error or to otherwise enhance a system.

10014023L 4-8

Table 1. Changes Needed to Correct
Errors or Enhance System

Effort to Isolate Changes

1 hr- 1 day-
Project < 1 hr 1 day 3 day • 3 day Total

GOESIM 116 102 27 7 262

UARSTELS 205 77 10 5 297

SAM PEXTS 8 7 0 0 15

These data are shown for three telemetry simula-

tors. GOESIM is an early Ada project whose design

is similar to previous FORTRAN projects.
UARSTELS is the first simulator in the

multimission telemetry simulator family, and
SAMPEXTS is a simulator that reuses from

UARSTELS. The second-generation systems have

a far greater proportion of changes that take less
than one hour to isolate. These results support the

claim that object-oriented designs produce systems
that are more easily modified because of the

information hiding provided by objects and classes.

The types of errors that occur also changed over
time. Table 2 shows the classification of errors for

the same three systems described above.

These data show that the development of UARS-

TELS, the initial second-generation system, was

slightly more error prone than other projects. While
overall errors were increasing, though, errors

relating to interfaces and data structures were
substantially reduced. Again, this is consistent with

the perceived benefits of abstraction and informa-
tion hiding. Even more striking is the complete
elimination of interface errors for high-reuse proj-

ects such as SAMPEXTS.

The other notable change is in how OOT affected

the development process. In the MTASS system, it

had minimal impact, as the design approach was

structured, with the object orientation being recog-

nized during coding. Both generations of simula-

tors used object-oriented design and object-based

coding based on Ada packages; the generalized

system project added an object-oriented approach

to defining specifications. It is anticipated that

having an object-oriented view throughout the life

cycle will make the use of the technology easier by

removing the need to recast functional specifica-

tions into an object-oriented design.

While object-oriented analysis has not been used

for most systems, the high-reuse architectures have

been influenced by how the specifications are

written. Typical specifications have focused on a

single satellite mission, and they specify the
simulation and ground-support software separately.

The building of the high-reuse MTASS and teleme-

try simulator systems was possible because the

flight dynamics analysts wrote a single specifica-
tion for the UARS and EUVE missions; the

simulator and ground-support systems were still

specified separately. The limitations of these speci-
fications is one factor that led to a domain-analysis

approach, so that a wider range of satellites can be

supported and commonality between ground sup-

port and simulation can be exploited. The domain-

analysis team switched from a structured to an

object-oriented approach as they attempted to write

a generalized specification.

Because the generalized system development is still

in design, the impact of object-oriented analysis

cannot yet be measured. But the use of object-ori-

ented design has changed the development process

by shifting work to the design phase. This is due to
the high reuse allowing the production of an initial

build by integrating existing components.
SAMPEXTS thus demonstrated a system that met a

large proportion of the requirements at the Critical
Design Review. Table 3 shows the distribution of

developer effort over the main phases of a develop-

ment project.

10014023L 4-9

Table 2. Classification of Errors

Error Class

Data Startup Computational Initialization Total

GOESIM 52 21

UARSTELS 25 40

SAMPEXTS 0 4

Table 3. Developer Effort Over Main
Development Phases

Effort Distribution by Phase

Project

GOESIM

UARSTELS

SAMPEXTS

Design

29%

25%

48%

Code Test

44% 27%

39% 36%

18% 34%

The SEL provided training in Ada and design
techniques for the early Ada simulator experiments,
but not for the later multimission simulators. The

MTASS FORTRAN system involved no training in
OOT, as the project did not set out to use a new

language or design technology. The subjective

experience of the SEL has been that the application

of OOT was not so intuitive as expected, as

functional decomposition has been successfully

applied for more than 15 years. The SEL, recogniz-
ing that transition to a new technology must factor

in the time required to learn the new way of
thinking, is creating a new training program that

captures the lessons learned on previous projects

and describes the overall object-oriented software

development process as well as specific language
and design concepts.

The goal of bringing new technology into the SEL

is to measurably improve the software development

process. Figure 6 shows the project characteristics

of the three multimission simulator projects.

The UARSTELS project was developed to be

reused for future simulators, and the projects

labeled EUVETELS and SAMPEXTS represent

the first two projects to reuse this architecture.

Costs were reduced by a factor of 3, change and

error rates were reduced by a factor of 10, and

Logic External I InternalInterface Interface

10

43 9 3

3 0 0

10 13 21 127

39 153

3 10

project cycle time was cut roughly in half. However,

we have already shown that when an attempt was
made to reuse this architecture for a different class

of projects there were difficulties adapting the code,

and run-time performance was unsatisfactory.

The generalized system effort is attempting to gain

the benefits shown for this single family of projects

over a wider variety of flight dynamics applica-

tions. This will allow the FDD to support more
missions simultaneously, and it will free resources

to concentrate on improving existing capabilities or
defining new ones.

SOME CONCLUSIONS

This paper addresses the question, "Is Object-Ori-

ented Technology, then, truly the most influential

method studied by the SEL to date?" The conclu-

sion of the SEL is that OOT does promote reuse,
sometimes even neglecting other important issues

like run-time efficiency. When coupled with

domain analysis, OOT enables high reuse across a

range of applications in a given environment. While
the reuse expectations were met, the use of OOT

was not so intuitive as expected, partly because the

technique was new to an organization with a mature

structured development process. The other factor
affecting the ease of transition is the inherent and

growing complexity of flight-dynamics problems;

OOT may be a better process but, in addition to

software techniques, skilled designers are still

needed to solve difficult problems.

Still, few (if any) of the other technologies studied

here have effects so widespread or so profound as

OOT. In fact, OOT is the first technology that

covers the entire development life cycle in the FDD.

It is an entirely new problem-solving paradigm, not

simply a new way of performing familiar tasks in a
traditional life cycle. It has been demonstrated to

10014023L 4-10

180

140

HOURS/ 12o

KSLOC loo
8o
(m
40
20
o

EFFORT S.0
4.5
_0
3.5

J OF CRFS/ _o

KSLOC _

O.5
0.0

CHANGE AND ERROR RATES

10o
go

Io

79

6O
WEEKS so

40
30
20
lO
o

PROJECT DURATION

!

UA_ _ SAMPIDr11

Figure 6. Project Characteristics, Multimission Simulators

expand the reusability and reconfigurability of
software, with resultant improvements in produc-

tivity and development cycle time. In this sense,

OOT is arguably the most influential technology

studied by the SEL.

, Basili, Victor R., and Katz, Elizabeth E.,

"Software Development in Ada," Proceedings

of the Ninth Annual Software Engineering
Workshop, Greenbelt, MD, November 1984,

pp. 65-85.

.

REFERENCES

McGarry, Frank E., and Waligora, Sharon,

"Recent Experiments in the SEL," Proceed-

ings of the Sixteenth Annual Software Engi-
neering Workshop, Greenbelt, MD, December

1991, pp. 77-85.

3. Booch, Grady, Software Engineering With Ada

(First Edition), Benjamin/Cummings, Menlo

Park, CA, 1983.

. Seidewitz, E., and Stark, M., General Object-

Oriented Software Development, SEL-86-002,

August 1986.

10014023L 4-11

!

|i

STANDARD BIBLIOGRAPHY OF
SEL LITERATURE

=

_ =_-Z._ _

=_

±.

|

i
|

i
-_=

aB

±

z

! ...

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-
ware Engineering Laboratory (SEL) during its research and development activities.

The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,
P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,

K. Freburger and V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,

November 1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005,A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. E Cook and E E. McGarry, December 1980

1 O00O229

1201/1700

BI-1

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of

Medium Scale Software Systems, G. O. Picasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Decem-
ber 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September
1981

SEL-81-101, Guide toData Collection, V. E. Church, D. N. Card, E E. McGarry, et al.,

August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, E E. McGarry,
G. Page, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (IV&V) Method-

ologyfor Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Software Development (Revision 3), L. Landis,
S. Waligora, E E. McGarry, et al., June 1992

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,

D. N. Card, and E E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102,FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

M. G. Rohleder, and E E. McGarry, October 1983

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, E E. McGarry, G. Page,

D. N. Card, et al., February 1984

1O0OO229

1201/1700

BI-2

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume H, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,

November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labo-

ratory (SEL), W. W. Agresti, V. E. Church, and E E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,

November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,

E E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, E McGarry,

and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,

December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,

R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)

Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1_, November 1986

1OO0O229

120111700

BI-3

SEL-86-005,Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-OO2,Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada ® Design Process and Its Implications: A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project." The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project." The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and E McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

IOO0O229

1201/1700

BI-4

SEL-89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-201, Software Engineering Laboratory (SEL) Database Organization and User's

Guide (Revision 2), L. Morusiewicz, J. Bristow, et al., October 1992

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of an Ada System in the Software Engineering Lab-

oratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,

November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) CIeanroom Process Model,

S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler

and K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,

December 1992

SEL-93-001, Collected Software Engineering Papers: Volume XI, November 1993

10000229

1_1/1700

BI-5

SEL-RELATED LITERATURE

l°Abd-EI-Hafiz, S. K., V. R. Basili, and (3. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and R L. Lo, "Designing With Ada for Sat-

ellite Simulation: A Case Study," Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"

Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W., and V. R. Basili, '_ Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-

ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

1°Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and

Reuse," Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"

ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the

First Pan-Paciftc Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

IEEE Software, January 1990

ZBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution

and Resource Estimation Problems?," Journal of Systems and Software, February 1981,
vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, '_, Reference Architecture for the Compo-

nent Factory,"ACM Transactions on Software Engineering and Methodology, January
1992

IOOOO229

12011_700

BI-6

10Basili,V.,G. Caldiera, E McGarry, et al., "The SoftwareEngineeringLaboratorym
An Operational SoftwareExperienceFactory," Proceedings of the Fourteenth Interna-

tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and

Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in

the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, '_RROWSMITH-P--A Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems

in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-

neering, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-

ronment," Proceedings of the Joint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Integrating Measurement Into Software

Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-
Oriented Software Environments," IEEE Transactions on Software Engineering, June

1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

10000229

120111700

BI-7

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes, University of Maryland, Technical

Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Software En-

gineering Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-

teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strat-

egies," IEEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NA TO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-

gies," IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss,A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, '_A Methodology for Collecting Valid Software Engi-

neering Data," IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-
'V " " 'tl es, Proceedmgs of the Fifteenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"

Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics

in the Local Environment," Computers and Structures, August 1978, vol. 10

100(_229

1201/-1700

BI-8

Basili, V. R., and M. V. Zelkowitz, '_uaalyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

1°Booth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance

Study--Results and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

l°Briand, L. C., and V. R. Basili, "A Classification Procedure for the Effective Manage-

ment of Changes During the Maintenance Process," Proceedings of the 1992 IEEE Con-

ference on Software Maintenance (CSM 92), November 1992

1°Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for

Optimizing the Verification and Testing Phases of Software Development," Proceed-

ings of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

11Briand ' L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with

Optimized Set Reduction for Identifying High Risk Software Components, TR-3048,

University of Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern Recognition Approach for Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

11Briand ' L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability

at the End of High Level Design," Proceedings of the 1993 IEEE Conference on Software

Maintenance (CSM 93), November 1993

11Briand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk

Early in Software Development," Proceedings of the Fifteenth International Conference

on Software Engineering (ICSE 93), May 1993

5Brophy, C.E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-
Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada

Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"

Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-

tion," Computer Sciences Corporation, Technical Memorandum, November 1982

I0000_229

120111700

BI-9

3Card, D.N., '_ Software Technology Evaluation Program," Annais do XI/III

Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal
of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of
Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, '_.n Empirical Study of Software Design

Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, '_, Software Engineering

View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., E E. McGarry, and G.T. Page, "Evaluating Software Engineering

Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and E E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D. N. Card, W. W. Agresti, and Q. L. Jordan, '_a,n Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

eDoerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through

Dynamic Variables," Proceedings of the Seventh International Computer Software and

Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-

ceedings of the Tenth International Conference on Software Engineering, April 1988

10000229

1201/1700

BI-10

11Li,N. R., andM. V.Zelkowitz, '_tn Information Model for Use inSoftwareManage-
mentEstimation andPrediction,"Proceedings of the Second Intemational Conference on

Information Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering

Information Bases From Software Process and Product Specifications," Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

7McGarry, E, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

3McGarry, E E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource

Quality on the Software Development Process and Product," Proceedings of the

Hawaiian International Conference on System Sciences, January 1985

3page, G., E E. McGarry, and D. N. Card, '_A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, '_kn Evaluation of Expert Systems for Software Engi-

neering Management," IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, '_knalyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., '_ Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,

March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,

September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

10000229

120111700

BI-11

7Rombach,H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

l°Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control:

Adding Maintenance Measurement to the SEL," Journal of Systems and Software,
May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life

Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"

Ada Letters, March/April 1991

]°Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters,
March/April 1992

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, '_m Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the
Seventh Washington Ada Symposium, June 1990

11Stark M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

l°Straub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Soft-

ware Specification Process," Proceedings of the Sixteenth International Computer Soft-

ware and Applications Conference (COMPSAC 92), September 1992

10000229

1201/1700

BI-12

8Straub,E A., and M. V.Zelkowitz, "PUC: A Functional SpecificationLanguagefor
Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Society, July 1990

7Sunazuka, T, and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

l°Tian, J., A. Porter, and M. V. Zelkowitz, '_An Improved Classification Tree Analysis of

High Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings

of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

l°Valett, J. D., 'Tkutomated Support for Experience-Based Software Management,"

Proceedings of the Second Irvine Software Symposium (ISS '92), March 1992

5Valett, J. D., and E E. McGarry, '_ Summary of Software Measurement Experiences

in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and K. Reed, 'A Structure Coverage Tool for Ada Software Sys-

tems," Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

2Zelkowitz, M.V., "Data Collection and Evaluation for Experimental Computer

Science Research," Empirical Foundations for Computer and Information Science (Pro-

ceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the

ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of

Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With

Syntax Editors," Information and Software Technology, April 1990

100O0229

120111700

BI-13

NOTES:

°This document superseded by revised document.

1This article also appears in SEL-82-004, Collected Software Engineenng
Volume I, July 1982.

2This article also appears in SEL-83-003, Collected Software Engmeenng
Volume II, November 1983.

3This article also appears in SEL-85-003, Collected Software Engmeenng
Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Software Engmeenng
Volume I_, November 1986.

5This article also appears in SEL-87-009, Collected Software Engmeenng
Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Software Engmeenng
Volume VI, November 1988.

7This article also appears in SEL-89-006, Collected Software Engmeenng
Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engmeenng
Volume VIII, November 1990.

9This article also appears

Volume IX, November 1991.

l°This article also appears

Volume X, November 1992.

in SEL-91-005, Collected Software Engmeenng

in SEL-92-003, Collected Software Engmeermg

11This article also appears in SEL-93-001, Collected Software Engmeenng
Volume X1, November 1993.

Papers:

Papers."

Papers:

Papers:

Papers:

Papers."

Papers:

Papers:

Papers:

Papers:

Papers."

10000229
1201/1"700

BI-14

